Due to the low bioavailability and severe toxic side effects caused by the lack of selectivity of traditional chemotherapy drugs, the targeted delivery of chemotherapy drugs has become the key to tumor treatment. The activity and transmembrane potential of mitochondria in cancer cells were significantly higher than that of normal cells, making them a potential target for chemotherapeutic drug delivery. In this study, triphenylphosphine (TPP) based mitochondria targeting polylactic acid (PLLA) nanoparticles (TPP-PLLA NPs) were synthesized to improve the delivery efficiency of anticancer drugs. The carrier material was characterized by 1H NMR and FT-IR and 7-hydroxyl coumarin (7-HC) was successfully loaded into TPP-PLLA to form 7-HC/TPP-PLLA NPs. Further studies showed that TPP-PLLA NPs were primarily accumulated in the mitochondrial and 7-HC/TPP-PLLA NPs had higher antitumor activity. Taken together, our results indicated that TPP-PLLA NPs could be a promising mitochondria-targeted drug delivery system for cancer therapy.
In this experiment, a new amphiphilic chitosan-poly(lactide) graft copolymer was synthesized and characterized by IR, 1H-NMR, XRD, TGA. The obtained chitosan-poly (lactide) graft copolymer was used as the matrix material to prepare nanodroplets (NDs) encapsulating with liquid PFP by double-emulsion and solvent evaporation method. The resulting NDs were characterized by photon correlation spectroscopy and transmission electron microscopy (TEM). The biocompatibility was explored by cytotoxicity assay, cell migration assay and blood biochemistry analysis. The experiments of ultrasonic imaging in vitro and in vivo were carried out with a B-mode clinical ultrasound imaging system. The results of FI-IR and 1H-NMR confirmed the successful grafting reaction of polylactic acid(PLLA) to chitosan with a graft rate of 365%. The average size of the NDs was 101.1 ± 2.7 nm, with the polydispersity index (PDI) of 0.127 ± 0.020, and the zeta potential was −31.8 ± 1.5 mV. From the TEM results, NDs were highly dispersed and had a spherical shape with a distinct capsule structure. The NDs exhibited good stability during storage at 4°C. The NDs solution with different concentrations did not affect cell growth and showed good biocompatibility in cytotoxicity, cell migration and blood biochemistry studies. Under the irradiation of ultrasonic waves, the NDs formed an ultrasonic high signal, which could significantly enhance the ultrasound imaging of tumor tissue in vivo. Taken together, the NDs hold great potential for ultrasound imaging as a nanosized contrast agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.