Macleaya cordata produces a variety of benzylisoquinoline alkaloids (BIAs), such as sanguinarine, protopine, and berberine, which are potential anticancer drugs and natural growth promoters. The genes encoding the berberine bridge enzyme (BBE) were isolated from M. cordata and Papaver somniferum, and then the two genes were overexpressed in M. cordata. Through liquid chromatography with triple-quadrupole mass spectrometry analysis, it was determined that McBBE-OX caused higher levels of (S)-norcoclaurine, (S)-coclaurine, (S)-N-cis-methylcoclaurine, (S)-reticuline, (S)-tetrahydrocolumbamine, (S)-tetrahydroberberine, (S)-cheilanthifoline, and (S)-scoulerine than PsBBE-OX, empty vector or control treatments. qRT-PCR analysis demonstrated that the introduced genes in the transgenic lines were all highly expressed. However, the levels of sanguinarine (SAN) and chelerythrine (CHE) in all the transgenic lines were slightly lower than those in the wild-type lines, possibly because the overexpression of McBBE causes feedback-inhibition. This is the first report on the overexpression of potential key genes in M. cordata, and the findings are important for the design of metabolic engineering strategies that target BIAs biosynthesis.
Sanguinarine is currently widely used to replace antibiotic growth promoters in animal feeding and has demonstrated useful anticancer activity. Currently, the main source of sanguinarine is from an important medicinal plant, Macleaya cordata. To obtain a new source of sanguinarine production, we established hairy root cultures of M. cordata by co-cultivating leaf and stem explants with Agrobacterium rhizogenes. Except the co-cultivation medium, all growth media contained 200 mg/L timentin to eliminate A. rhizogenes. Through comparing the metabolic profiles and gene expression of hairy roots and wild-type roots sampled at five time points, we found that the sanguinarine and dihydrosanguinarine contents of hairy roots were far higher than those of wild-type roots, and we revealed the molecular mechanism that causes these metabolites to increase. Consequently, this study demonstrated that the hairy root system has further potential for bioengineering and sustainable production of sanguinarine on a commercial scale. To the best of our knowledge, this is the first efficient protocol reported for the establishment of hairy root cultures in M. cordata using A. rhizogenes.
To achieve ignition with high gain in inertial confinement fusion, precise symmetry control is one of the key issues to guarantee the PdV work converting into the inner energy efficiently and maximize the pressure of the hot spot. The shaped pulse is used to maintain a low adiabat of the shell. A longer pulse and more compressible shell require more rigorous symmetry control, especially the driven symmetry during the picket pulse and main pulse. A surrogate capsule with high Z materials is usually used for the early-time symmetry tuning. The passive diagnosis of the re-emission spheres gives the time-resolved measurement of the first 2 ns, and the precision is mainly affected by the weak signals due to the low radiation temperature of the hohlraum. To compare with the re-emission technique with high Z surrogate capsule, we demonstrated the early-time symmetry tuning for picket pulse by using thin-shell capsule radiography technique. Combined with 1D hydrodynamics simulation and backlit imaging simulation, the driven asymmetry was quantified. A view factor assessment was also carried out by IRAD3D and coincided with the experimental consequences.
The first laser–plasma interaction experiment using lasers of eight beams grouped into one octad has been conducted on the Shenguang Octopus facility. Although each beam intensity is below its individual threshold for stimulated Brillouin backscattering (SBS), collective behaviors are excited to enhance the octad SBS. In particular, when two-color/cone lasers with wavelength separation 0.3 nm are used, the backward SBS reflectivities show novel behavior in which beams of longer wavelength achieve higher SBS gain. This property of SBS can be attributed to the rotation of the wave vectors of common ion acoustic waves due to the competition of detunings between geometrical angle and wavelength separation. This mechanism is confirmed using massively parallel supercomputer simulations with the three-dimensional laser–plasma interaction code LAP3D.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.