User-facing, latency-sensitive services, such as websearch, underutilize their computing resources during daily periods of low traffic. Reusing those resources for other tasks is rarely done in production services since the contention for shared resources can cause latency spikes that violate the service-level objectives of latency-sensitive tasks. The resulting under-utilization hurts both the affordability and energy efficiency of large-scale datacenters. With the slowdown in technology scaling caused by the sunsetting of Moore's law, it becomes important to address this opportunity. We present Heracles, a feedback-based controller that enables the safe colocation of best-effort tasks alongside a latency-critical service. Heracles dynamically manages multiple hardware and software isolation mechanisms, such as CPU, memory, and network isolation, to ensure that the latency-sensitive job meets latency targets while maximizing the resources given to best-effort tasks. We evaluate Heracles using production latency-critical and batch workloads from Google and demonstrate average server utilizations of 90% without latency violations across all the load and colocation scenarios that we evaluated. CCS Concepts: r Computer systems organization → Cloud computing; r Software and its engineering → Scheduling
Reducing the energy footprint of warehouse-scale computer (WSC) systems is key to their affordability, yet difficult to achieve in practice. The lack of energy proportionality of typical WSC hardware and the fact that important workloads (such as search) require all servers to remain up regardless of traffic intensity ren ders existing power management techniques ineffective at reduc ing WSC energy use.We present PEGASUS, a feedback-based controller that sig nificantly improves the energy proportionality of wsc systems, as demonstrated by a real implementation in a Google search cluster. PEGASUS uses request latency statistics to dynamically adjust server power management limits in a fine-grain manner, running each server just fast enough to meet global service-level latency objectives. In large cluster experiments, PEGASUS re duces power consumption by up to 20%. We also estimate that a distributed version of PEGASUS can nearly double these sav ings.
Reducing the energy footprint of warehouse-scale computer (WSC) systems is key to their affordability, yet difficult to achieve in practice. The lack of energy proportionality of typical WSC hardware and the fact that important workloads (such as search) require all servers to remain up regardless of traffic intensity renders existing power management techniques ineffective at reducing WSC energy use.
We present PEGASUS, a feedback-based controller that significantly improves the energy proportionality of WSC systems, as demonstrated by a real implementation in a Google search cluster. PEGASUS uses request latency statistics to dynamically adjust server power management limits in a fine-grain manner, running each server just fast enough to meet global service-level latency objectives. In large cluster experiments, PEGASUS reduces power consumption by up to 20%. We also estimate that a distributed version of PEGASUS can nearly double these savings
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.