Machine fault diagnosis systems need to collect and transmit dynamic monitoring signals, like vibration and current signals, at high-speed. However, industrial wireless sensor networks (IWSNs) and Industrial Internet of Things (IIoT) are generally based on low-speed wireless protocols, such as ZigBee and IEEE802.15.4. To address this tension when implementing machine fault diagnosis applications in IIoT, this paper proposes a novel IWSN with on-sensor data processing. On-sensor wavelet transforms using four popular mother wavelets are explored for fault feature extraction, while an on-sensor support vector machine classifier is investigated for fault diagnosis. The effectiveness of the presented approach is evaluated by a set of experiments using motor bearing vibration data. The experimental results show that compared with raw data transmission, the proposed on-sensor fault diagnosis method can reduce the payload transmission data by 99.95%, and reduce the node energy consumption by about 10%, while the fault diagnosis accuracy of the proposed approach reaches 98%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.