This work demonstrates CuGaO2 as an efficient alternative to NiO as a photocathode material in dye-sensitized solar cells. A remarkable photocurrent has been achieved by the CuGaO2 photocathode.
In this paper, low-cost counter electrodes (CEs) based on water-soluble multiwall carbon nanotube (MWCNT) and Cu2ZnSnSe4 nanoparticle (CZTSe NP) composites have been successfully introduced into a quantum dot-sensitized solar cell (QDSC) system. Suitable surface modification allows the MWCNTs and CZTSe NPs to be homogeneously dispersed in water, facilitating the subsequent low-temperature spray deposition of high quality composite films with different composite ratios. The electrochemical catalytic activity of the composite CEs has been critically compared by electrochemical impedance spectroscopy and Tafel-polarization analysis. It is found that the composite CE at the MWCNT : CZTSe ratio of 0.1 offers the best performance, leading to an optimal solar cell efficiency of 4.60%, which is 50.8% higher than that of the Pt reference CE. The as-demonstrated higher catalytic activity of the composite CEs compared to their single components could be ascribed to the combination of the fast electron transport of the MWCNTs and the high catalytic activity of CZTSe NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.