The adult intestinal stem cells (ISCs), their hierarchies, mechanisms of maintenance and differentiation have been extensively studied. However, when and how ISCs are established during embryogenesis remains unknown. We show here that the transcription regulator Id2 controls the specification of embryonic Lgr5 progenitors in the developing murine small intestine. Cell fate mapping analysis revealed that Lgr5 progenitors emerge at E13.5 in wild-type embryos and differ from the rest on the intestinal epithelium by a characteristic ISC signature. In the absence of Id2, the intestinal epithelium differentiates into Lgr5 cells already at E9.5. Furthermore, the size of the Lgr5 cell pool is significantly increased. We show that Id2 restricts the activity of the Wnt signalling pathway at early stages and prevents precocious differentiation of the embryonic intestinal epithelium. Id2-deficient embryonic epithelial cells cultured strongly activate Wnt target genes as well as markers of neoplastic transformation and form fast growing undifferentiated spheroids. Furthermore, adult ISCs from Id2-deficient mice display a distinct transcriptional signature, supporting an essential role for Id2 in the correct specification of ISCs.
The adult intestinal stem cells (ISCs) are transcriptionally heterogeneous. As the mechanisms governing their developmental specification are still poorly understood, whether this heterogeneity reflects an early determination of distinct cellular sub-types with potentially distinct physiological functions remains an open question. We investigate the cellular heterogeneity within the mouse embryonic midgut epithelium at the molecular and functional levels. Cell fate mapping analysis revealed that multiple early embryonic epithelial progenitors give rise to Lgr5 ISCs. The origin of the molecularly distinct early precursors along the anterior-posterior axis defines the transcriptional signature of embryonic Lgr5 ISC progenitors. We further show that the early epithelial progenitors have different capacity to generate Lgr5 ISC progenitors and Axin2 early precursors display the highest potential.
Continuous and rapid renewal of the intestinal epithelium depends on intestinal stem cells (ISCs). A large repertoire of transcription factors mediates the correct maintenance and differentiation of ISCs along either absorptive or secretory lineages. In the present study, we addressed the role of TCF7L1, a negative regulator of WNT signalling, in embryonic and adult intestinal epithelium using conditional mouse mutants. We found that TCF7L1 prevents precocious differentiation of the embryonic intestinal epithelial progenitors towards enterocytes and ISCs. We show that Tcf7l1 deficiency leads to upregulation of the Notch effector Rbp-J, resulting in a subsequent loss of embryonic secretory progenitors. In the adult small intestine, TCF7L1 is required for the differentiation of secretory epithelial progenitors along the tuft cell lineage. Furthermore, we show that Tcf7l1 promotes the differentiation of enteroendocrine D- and L-cells in the anterior small intestine. We conclude that TCF7L1-mediated repression of both Notch and WNT pathways is essential for the correct differentiation of intestinal secretory progenitors.
Recent advances in immunotherapy demonstrate the need to further understand the characteristics of an individual cancer patient’s immune system and how it influences responses to cancer treatment. Here, we developed an immunoprofiling platform to evaluate the features in the blood of cancer patients to test the hypothesis that peripheral immune cell heterogeneity could be used to stratify these patients into different categories or immunotypes to monitor disease progression and treatment response. To that end, we established a unique diagnostic immunoprofiling assay and analytical framework based on the analysis of leukocytes in the peripheral blood using multiparameter flow cytometry. Supervised manual gating of flow cytometry data from a cohort of 50 healthy donors identified 415 cell types and immune activation states that were used to train and later independently validate machine learning models to automatically identify immune cell subsets from raw cytometry data. By applying this tool to peripheral blood samples from a mixed cohort of 299 healthy donors and 323 cancer patients, we developed a machine-learning classification model that can differentiate between these two groups with 93% accuracy. This model was further refined using spectral clustering with bootstrapping, revealing 5 clusters, or immunotypes, characterized by specific physiological immune profiles: (1) Myeloid-derived suppressor/NK cell, (2) Terminally-differentiated CD8+ T cells, (3) Mixed CD4+ T helper cells, (4) CD4+ Th1 & CD8+ T cell memory, and (5) Naive T and B lymphocytes. Interestingly, very few healthy donors could be found in clusters 1 and 2 but were assigned most frequently to cluster 5. Matched RNA-seq was used to further validate these profiles using the cellular deconvolution algorithm, Kassandra, and differential gene expression analysis revealed immunotype-specific signatures that are consistent with immune response potential. Patients in the terminally-differentiated CD8+ T cell cluster had a narrower range of HLA-types than the other clusters, and TCR repertoire analysis indicated significantly increased clonality and reduced clonotype diversity. Within this cluster there was a high degree of overlap between TCR sequences in the peripheral blood and the tumor, indicating a relationship between peripheral blood immunotype and tumor infiltration. Altogether, the establishment of these immunotypes using peripheral blood immunoprofiling represents a promising signature that can be used to identify and stratify cancer patients that will benefit from immune-based therapies. Citation Format: Daniiar Dyikanov, Iris Wang, Tatiana Vasileva, Polina Shpudeiko, Polina Turova, Arseniy A. Sokolov, Olga Golubeva, Evgenii Tikhonov, Anna Kamysheva, Ilya Krauz, Mary Abdou, Madison Chasse, Tori Conroy, Nicholas R. Merriam, Boris Shpak, Anastasia Radko, Anastasiia Kilina, Lira Nigmatullina, Linda Balabanian, Christopher J. Davitt, Alexander A. Ryabykh, Olga Kudryashova, Cagdas Tazearslan, Ravshan Ataullakhanov, Alexander Bagaev, Aleksandr Zaitsev, Nathan Fowler, Michael F. Goldberg. Comprehensive immunoprofiling of peripheral blood reveals five conserved immunotypes with implications for immunotherapy in cancer patients [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 6664.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.