To assess the effect of low-molecular-weight polysaccharides from Agaricus blazei Murrill (ABP-AW1) as an immunoadjuvant therapy for type 1 T-helper (Th1) responses in tumorigenesis, C57BL/6 mice were inoculated subcutaneously with ovalbumin (E.G7-OVA). After 3, 10 and 17 days, the mice were immunized with PBS, OVA alone, or OVA and ABP-AW1, at low (50 µg), intermediate (100 µg) or high (200 µg) doses. Tumor growth was examined and compared among the groups, as were the following parameters: Splenocyte viability/proliferation, peripheral blood CD4+/CD8+ T cell ratio, serum OVA-specific IgG1 and IgG2b, secretion of interleukin (IL)-2 and interferon (IFN)-γ, and IFN-γ production on a single cell level from cultured splenocytes. Tumor growth in mice treated with OVA and ABP-AW1 (100 or 200 µg) was significantly slower, compared with in the other groups at the same time-points. OVA with 100 or 200 µg ABP-AW1 was associated with a higher number of total splenocytes, a higher ratio of peripheral blood CD4+/CD8+ T-lymphocytes, higher serum levels of OVA-specific Th1-type antibody IgG2b and greater secretion of the Th1 cytokines IL-1 and IFN-γ from splenocytes. ABP-AW1 is a promising immunoadjuvant therapy candidate, due to its ability to boost the Th1 immune response when co-administered with a cancer vaccine intended to inhibit cancer progression.
In the present study, a low molecular weight polysaccharide, ABP-AW1, isolated from Agaricus blazei Murill was assessed for its potential adjuvant activity. ABP-AW1 is considered to create a ‘depot’ of antigen at a subcutaneous injection site. ICR mice were immunized with 100 μg ovalbumin (OVA) alone or with 100 μg OVA formulated in 0.9% saline containing 200 μg aluminum (alum) or ABP-AW1 (50, 100 and 200 μg) on days 1 and 15. Two weeks after the secondary immunization, splenocyte proliferation, the expression of surface markers, cytokine production and the OVA-specific antibody levels in the serum were determined. The OVA/ABP-AW1 vaccine, in comparison with OVA alone, markedly increased the proliferation of splenic lymphocytes and elicited greater antigen-specific CD4+ T cell activation, as determined by splenic CD4+CD69+ T cells and Th1 cytokine interferon (IFN)-γ release. The combination of ABP-AW1 and OVA also enhanced IgG2b antibody responses to OVA. In conclusion, these data indicated that ABP-AW1 significantly enhanced the humoral and cellular immune responses against OVA in the mice, suggesting that ABP-AW1 stimulated Th1-type immunity. We suggest that ABP-AW1 may serve as a new adjuvant.
Context: Ligustrazine and valsartan are commonly used drugs in the treatment of cardiac and cardiovascular disease. Objective: The interaction between ligustrazine and valsartan was studied to investigate the effect of ligustrazine on the pharmacokinetics of valsartan. Materials and methods: The pharmacokinetics of valsartan (10 mg/kg) was investigated in Sprague-Dawley rats divided into three groups (with the pretreatment of 4 or 10 mg/kg/day ligustrazine for 10 days and without the pretreatment of ligustrazine as control) of six rats each. The in vitro experiments in rat liver microsomes were performed to explore the effect of ligustrazine on the metabolic stability of valsartan. Results: Ligustrazine changed the pharmacokinetic profile of valsartan. In the presence of 4 mg/kg ligustrazine, the AUC (0-t) (385.37 ± 93.05 versus 851.64 ± 104.26 lg/L Ã h), t 1/2 (5.46 ± 0.93 versus 6.34 ± 1.25 h), and C max (62.64 ± 9.09 versus 83.87 ± 6.15 lg/L) of valsartan was significantly decreased, and the clearance rate was increased from 10.92 ± 1.521 to 25.76 ± 6.24 L/h/kg and similar changes were observed in the group with 10 mg/kg ligustrazine (p < 0.05). The metabolic stability of valsartan was also decreased by ligustrazine as the half-life of valsartan in rat liver microsomes decreased from 37.12 ± 4.06 to 33.48 ± 3.56 min and the intrinsic clearance rate increased from 37.34 ± 3.84 to 41.40 ± 4.32 lL/min/mg protein (p < 0.05). Discussion and conclusions: Ligustrazine promoted the metabolism of valsartan via activating CYP3A4. The co-administration of ligustrazine and valsartan should be taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.