In this paper we present an all-optical silicon based modulator suggested also for high power operation and for pulse picker application being used as part of fiber lasers system. The paper theoretically and experimentally investigates several new and important insights involving the dependence of the relative transmission on the pump pulse energy for different finesse values of the constructed cavity as well as the dependence of the response rate of the device to the pump wavelength due to coexistence of two physical recombination processes: fast surface effect and slow bulk recombination. To adapt the constructed silicon based cavity to be used in lasers applications, we aligned the pump and the signal beams to co-propagate through the device while the usage of a cavity allowed a low power pump to yield a significant extinction ratio at the output of the device.
In this paper we present an all-optical silicon modulator, where a silicon slab (450 µm) thick is coated on both sides to get a Fabry-Perot resonator for laser beam at wavelength of 1550nm. Most of the modulators discussed in literature, are driven by electrical field rather than by light. We investigate new approaches regarding the dependence of the absorption of the optical signal on the control laser pulse at 532 nm having 5nm pulse width. Our silicon based Fabry-Perot resonator increases the intrinsic c-Si finesse to >10, instead of the uncoated silicon with natural finesse of 2.5. The improved finesse is shown to have significant effect on the modulation depth using a pulsed laser. A modulation of 12dB was attained. The modulation is ascribed to two different effects -The Plasma Dispersion Effect (PDE) and the ThermoOptic Effect (TOE). The PDE causes increase in the signal absorption in silicon via the absorption of the control laser light. On top of that, the transmission of the signal can decrease dramatically in high finesse resonators due to change in the refractive index due to TOE. The changes in the signal's absorption coefficient and in the refractive index are the result of incremental change in the concentration of free carriers. The TOE gives rise to higher refractive index as opposed to the PDE which triggers a decrease in the refractive index. Finally, tradeoff considerations are presented on how to modify one effect to counter the other one, leading to an optimal device having reduced temperature dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.