Background-Systemic delivery of bone marrow-derived mesenchymal stem cells (BM-MSCs) is an attractive approach for myocardial repair. We aimed to test this strategy in a rat model after myocardial infarction (MI). Methods and Results-BM-MSCs were obtained from rat bone marrow, expanded in vitro to a purity of Ͼ50%, and labeled with 99m Tc exametazime, fluorescent dye, LacZ marker gene, or bromodeoxyuridine. Rats were subjected to MI by transient coronary artery occlusion or to sham MI.99m Tc-labeled cells (4ϫ10 6 ) were transfused into the left ventricular cavity of MI rats either at 2 or 10 to 14 days after MI and were compared with sham-MI rats or MI rats treated with intravenous infusion. Gamma camera imaging and isolated organ counting 4 hours after intravenous infusion revealed uptake of the 99m Tc-labeled cells mainly in the lungs, with significantly smaller amounts in the liver, heart, and spleen. Delivery by left ventricular cavity infusion resulted in drastically lower lung uptake, better uptake in the heart, and specifically higher uptake in infarcted compared with sham-MI hearts. Histological examination at 1 week after infusion identified labeled cells either in the infarcted or border zone but not in remote viable myocardium or sham-MI hearts. Labeled cells were also identified in the lung, liver, spleen, and bone marrow.
Background-Adverse cardiac remodeling and progression of heart failure after myocardial infarction are associated with excessive and continuous damage to the extracellular matrix. We hypothesized that injection of in situ-forming alginate hydrogel into recent and old infarcts would provide a temporary scaffold and attenuate adverse cardiac remodeling and dysfunction. Methods and Results-We developed a novel absorbable biomaterial composed of calcium-crosslinked alginate solution, which displays low viscosity and, after injection into the infarct, undergoes phase transition into hydrogel. To determine the outcome of the biomaterial after injection, calcium-crosslinked biotin-labeled alginate was injected into the infarct 7 days after anterior myocardial infarction in rat. Serial histology studies showed in situ formation of alginate hydrogel implant, which occupied up to 50% of the scar area. The biomaterial was replaced by connective tissue within 6 weeks. Serial echocardiography studies before and 60 days after injection showed that injection of alginate biomaterial into recent (7 days) infarct increased scar thickness and attenuated left ventricular systolic and diastolic dilatation and dysfunction. These beneficial effects were comparable and sometimes superior to those achieved by neonatal cardiomyocyte transplantation. Moreover, injection of alginate biomaterial into old myocardial infarction (60 days) increased scar thickness and improved systolic and diastolic dysfunction. Conclusions-We show for the first time that injection of in situ-forming, bioabsorbable alginate hydrogel is an effective acellular strategy that prevents adverse cardiac remodeling and dysfunction in recent and old myocardial infarctions in rat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.