Suppose customers need to choose when to arrive to a congested queue with some desired service at the end, provided by a single server that operates only during a certain time interval. We study a model where the customers incur not only congestion (waiting) costs but also penalties for their index of arrival. Arriving before other customers is desirable when the value of service decreases with every admitted customer. This may be the case for example when arriving at a concert or a bus with unmarked seats or going to lunch in a busy cafeteria. We provide game theoretic analysis of such queueing systems with a given number of customers, specifically we characterize the arrival process which constitutes a symmetric Nash equilibrium.
This paper aims at semi-parametrically estimating the input process to a Lévy-driven queue by sampling the workload process at Poisson times. We construct a method-ofmoments based estimator for the Lévy process' characteristic exponent. This method exploits the known distribution of the workload sampled at an exponential time, thus taking into account the dependence between subsequent samples. Verifiable conditions for consistency and asymptotic normality are provided, along with explicit expressions for the asymptotic variance. The method requires an intermediate estimation step of estimating a constant (related to both the input distribution and the sampling rate); this constant also features in the asymptotic analysis. For subordinator Lévy input, a partial MLE is constructed for the intermediate step and we show that it satisfies the consistency and asymptotic normality conditions. For general spectrally-positive Lévy input a biased estimator is proposed that only uses workload observations above some threshold; the bias can be made arbitrarily small by appropriately choosing the threshold. * To appear in Bernoulli.
We provide Game-theoretic analysis of the arrival process to a multi-server system with a limited queue buffer, which admits customers only during a finite time interval. A customer who arrives at a full system is blocked and does not receive service. Customers can choose their arrival times with the goal of minimizing their probability of being blocked. We characterize the unique symmetric Nash equilibrium arrival distribution and present a method for computing it. This distribution is comprised of an atom at time zero, an interval with no arrivals (a gap), and a continuous distribution until the closing time. We further present a fluid approximation for the equilibrium behaviour when the population is large, where the fluid solution also admits an atom at zero, no gap, and a uniform distribution throughout the arrival interval. In doing so, we provide an approximation model for the equilibrium behaviour that does not require a numerical solution for a set of differential equations, as is required in the discrete case. For the corresponding problem of social optimization we provide explicit analysis of some special cases and numerical analysis of the general model. An upper bound is established for the price of anarchy (PoA). The PoA is shown to be not monotone with respect to population size.
We consider the problem of scheduling arrivals to a congestion system with a finite number of users having identical deterministic demand sizes. The congestion is of the processor sharing type in the sense that all users in the system at any given time are served simultaneously. However, in contrast to classical processor sharing congestion models, the processing slowdown is proportional to the number of users in the system at any time. That is, the rate of service experienced by all users is linearly decreasing with the number of users. For each user there is an ideal departure time (due date). A centralized scheduling goal is then to select arrival times so as to minimize the total penalty due to deviations from ideal times weighted with sojourn times. Each deviation is assumed quadratic, or more generally convex. But due to the dynamics of the system, the scheduling objective function is non-convex. Specifically, the system objective function is a non-smooth piecewise convex function. Nevertheless, we are able to leverage the structure of the problem to derive an algorithm that finds the global optimum in a (large but) finite number of steps, each involving the solution of a constrained convex program. Further, we put forward several heuristics. The first is the traversal of neighbouring constrained convex programming problems, that is guaranteed to reach a local minimum of the centralized problem. This is a form of a "local search", where we use the problem structure in a novel manner. The second is a one-coordinate "global search", used in coordinate pivot iteration. We then merge these two heuristics into a unified "local-global" heuristic, and numerically illustrate the effectiveness of this heuristic. *
We study the strategic purchasing of priorities in a time-dependent accumulating priority M/G/1 queue. We formulate a non-cooperative game in which customers purchase priority coefficients with the goal of reducing waiting costs in exchange. The priority of each customer in the queue is a linear function of the individual waiting time, with the purchased coefficient being the slope. The unique pure Nash equilibrium is solved explicitly for the case with homogeneous customers. A general characterisation of the Nash equilibrium is provided for the heterogeneous case. It is shown that both avoid the crowd and follow the crowd behaviours are prevalent, within class types and between them. We further present a pricing mechanism that ensures the order of the accumulating priority rates in equilibrium follows a Cµ type rule and improves overall efficiency. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.