6D grasping in cluttered scenes is a longstanding robotic manipulation problem. Open-loop manipulation pipelines can fail due to modularity and error sensitivity while most end-to-end grasping policies with raw perception inputs have not yet scaled to complex scenes with obstacles. In this work, we propose a new method to close the gap through sampling and selecting plans in the latent space. Our hierarchical framework learns collision-free target-driven grasping based on partial point cloud observations. Our method learns an embedding space to represent expert grasping plans and a variational autoencoder to sample diverse latent plans at inference time. Furthermore, we train a latent plan critic for plan selection and an option classifier for switching to an instance grasping policy through hierarchical reinforcement learning. We evaluate and analyze our method and compare against several baselines in simulation, and demonstrate that the latent planning can generalize to the real-world cluttered-scene grasping task. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.