Mutations in the ubiquitin ligase parkin are responsible for a familial form of Parkinson's disease. Parkin and the PINK1 kinase regulate a quality-control system for mitochondria. PINK1 phosphorylates ubiquitin on the outer membrane of damaged mitochondria, thus leading to recruitment and activation of parkin via phosphorylation of its ubiquitin-like (Ubl) domain. Here, we describe the mechanism of parkin activation by phosphorylation. The crystal structure of phosphorylated Bactrocera dorsalis (oriental fruit fly) parkin in complex with phosphorylated ubiquitin and an E2 ubiquitin-conjugating enzyme reveals that the key activating step is movement of the Ubl domain and release of the catalytic RING2 domain. Hydrogen/deuterium exchange and NMR experiments with the various intermediates in the activation pathway confirm and extend the interpretation of the crystal structure to mammalian parkin. Our results rationalize previously unexplained Parkinson's disease mutations and the presence of internal linkers that allow large domain movements in parkin.
The basidiomycete fungus Gloeophyllum trabeum causes a typical brown rot and is known to use reactive oxygen species in the degradation of cellulose. The extracellular Cel12A is one of the few endo-1,4-β-glucanase produced by G. trabeum. Here we cloned cel12A and heterologously expressed it in Aspergillus niger. The identity of the resulting recombinant protein was confirmed by mass spectrometry. We used the purified GtCel12A to determine its substrate specificity and basic biochemical properties. The G. trabeum Cel12A showed highest activity on β-glucan, followed by lichenan, carboxymethylcellulose, phosphoric acid swollen cellulose, microcrystalline cellulose, and filter paper. The optimal pH and temperature for enzymatic activity were, respectively, 4.5 and 50°C on β-glucan. Under these conditions specific activity was 239.2±9.1 U mg−1 and the half-life of the enzyme was 84.6±3.5 hours. Thermofluor studies revealed that the enzyme was most thermal stable at pH 3. Using β-glucan as a substrate, the Km was 3.2±0.5 mg mL−1 and the Vmax was 0.41±0.02 µmol min−1. Analysis of the effects of GtCel12A on oat spelt and filter paper by scanning electron microscopy revealed the morphological changes taking place during the process.
-Production of cellulases under solid-state fermentation (SSF) is a promising technique that can help to reduce costs. Besides optimizing the production process, it is also important to consider enzyme recovery during the extraction step. Here, an experimental design methodology was used to investigate the effects of the operational parameters solid to liquid ratio (1:3, 1:6 and 1:9), stirring rate (80, 120 and 160 rpm), and temperature (10, 22 and 35 °C) on the recovery of endoglucanases produced by Aspergillus niger cultivated under SSF. Statistical analysis revealed that only the solid to liquid ratio had a significant influence on endoglucanase extraction. The highest endoglucanase recovery (35.7 U/g) was achieved using 0.2 mol/L acetate buffer at pH 4.8, together with a solid to liquid ratio of 1:9 and an agitation time of 10 minutes. In sequential extraction experiments, it was shown that most of the enzyme was recovered during the first extraction. The procedure adopted increased the efficiency of endoglucanase extraction by 70%, emphasizing the importance of selection of suitable operational conditions during SSF processes.
Endoglucanases are key enzymes applied to the conversion of biomass aiming for second generation biofuel production. In the present study we obtained the small angle X-ray scattering (SAXS) structure of the G. trabeum
endo-1,4-β-glucanase Cel12A and investigated the influence of an important parameter, temperature, on both secondary and tertiary structure of the enzyme and its activity. The CD analysis for GtCel12A revealed that changes in the CD spectra starts at 55 °C and the Tm calculated from the experimental CD sigmoid curve using the Boltzmann function was 60.2 ± 0.6 °C. SAXS data showed that GtCel12A forms monomers in solution and has an elongated form with a maximum diameter of 60 ± 5 Å and a gyration radius of 19.4 ± 0.1 Å as calculated from the distance distribution function. Kratky analysis revealed that 60 °C is the critical temperature above which we observed clear indications of denaturation. Our results showed the influence of temperature on the stability and activity of enzymes and revealed novel structural features of GtCel12A.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.