Abstract. The effectiveness of a 1.4 m wide grass hedge in reducing microbial transport following manure application was examined in this study. Beef cattle manure was applied to 0.75 m wide by 4.0 m long plots established on an Aksarben silty clay loam located in southeast Nebraska. Manure was added at rates required to meet none or the 1-, 2-, or 4-year nitrogen requirements for corn. The transport of phages, total coliforms, , and enterococci was measured for three 30 min simulated rainfall events, which were separated by approximately 24 h intervals. The narrow grass hedge reduced total counts of phages, , and enterococci from 10.8 to 9.01 log PFU ha-1, from 12.4 to 11.9 log CFU ha-1, and from 11.8 to 11.2 log CFU ha-1, respectively. For the plots that received manure, no significant differences in transport of phages or enterococci were found among the three manure application rates. Rainfall simulation run significantly affected measurements of phages, total coliforms, and enterococci, with measurements during the three runs varying from 8.91 to 10.5 log PFU ha-1, from 12.7 to 13.3 log CFU ha-1, and from 11.2 to 11.7 log CFU ha-1, respectively. Counts for phages, total coliforms, and enterococci were significantly less for the first than the second and third rainfall simulation runs. All four of the microbial constituents were significantly correlated to dissolved P, particulate P, total P, and total N. A narrow grass hedge placed on the contour significantly reduced microbial transport following variable applications of beef cattle manure. Keywords: Bacteria, Cattle manure, E. coli, Filter strips, Land application, Manure management, Manure runoff, Microbial, Microorganisms, Runoff.
Abstract. Manure is applied to cropland areas with varying surface cover to meet single- or multiple-year crop nutrient requirements. The objectives of this field study were to (1) examine microbial transport following land application of manure to sites with and without wheat residue, (2) compare microbial loads following land application to meet the 0, 1, 2, 4, and 8-year P-based requirements for corn, and (3) evaluate the effects of rainfall simulation run on microbial transport. Manure was added and incorporated by disking plots that were 0.75 m wide by 2.0 m long. Three 30 min simulated rainfall events, separated by 24 h intervals, were then applied at an intensity of 70 mm h-1. Plots containing wheat residue had a total coliform load of 12.6 log CFU ha-1, which was significantly greater than the 12.4 log CFU ha-1 measured on the plots without wheat residue. The plots with and without wheat residue had transport rates of and enterococci that were not significantly different. The plots on which manure was added at rates varying from 5.4 to 42.8 Mg ha-1 had counts of total coliforms and enterococci that were not significantly different. Rainfall simulation run did not significantly affect measurements of phages, total coliforms, or enterococci. Transport of selected microbes was found to be significantly affected by residue cover, manure application rate, and rainfall simulation run. Keywords: Bacteria, Cattle manure, E. coli, Feedlots, Land application, Manure management, Manure runoff, Microbial, Microorganisms, Runoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.