Background: In 2007, an expert panel reviewed associations between bisphenol A (BPA) exposure and reproductive health outcomes. Since then, new studies have been conducted on the impact of BPA on reproduction.Objective: In this review, we summarize data obtained since 2007, focusing on a) findings from human and animal studies, b) the effects of BPA on a variety of reproductive end points, and c) mechanisms of BPA action.Methods: We reviewed the literature published from 2007 to 2013 using a PubMed search based on keywords related to BPA and male and female reproduction.Discussion: Because BPA has been reported to affect the onset of meiosis in both animal and in vitro models, interfere with germ cell nest breakdown in animal models, accelerate follicle transition in several animal species, alter steroidogenesis in multiple animal models and women, and reduce oocyte quality in animal models and women undergoing in vitro fertilization (IVF), we consider it an ovarian toxicant. In addition, strong evidence suggests that BPA is a uterine toxicant because it impaired uterine endometrial proliferation, decreased uterine receptivity, and increased implantation failure in animal models. BPA exposure may be associated with adverse birth outcomes, hyperandrogenism, sexual dysfunction, and impaired implantation in humans, but additional studies are required to confirm these associations. Studies also suggest that BPA may be a testicular toxicant in animal models, but the data in humans are equivocal. Finally, insufficient evidence exists regarding effects of BPA on the oviduct, the placenta, and pubertal development.Conclusion: Based on reports that BPA impacts female reproduction and has the potential to affect male reproductive systems in humans and animals, we conclude that BPA is a reproductive toxicant.Citation: Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. 2014. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect 122:775–786; http://dx.doi.org/10.1289/ehp.1307728
Assisted reproductive technologies (ART) are associated with several complications including low birth weight, abnormal placentation and increased risk for rare imprinting disorders. Indeed, experimental studies demonstrate ART procedures independent of existing infertility induce epigenetic perturbations in the embryo and extraembryonic tissues. To test the hypothesis that these epigenetic perturbations persist and result in adverse outcomes at term, we assessed placental morphology and methylation profiles in E18.5 mouse concepti generated by in vitro fertilization (IVF) in two different genetic backgrounds. We also examined embryo transfer (ET) and superovulation procedures to ascertain if they contribute to developmental and epigenetic effects. Increased placental weight and reduced fetal-to-placental weight ratio were observed in all ART groups when compared with naturally conceived controls, demonstrating that non-surgical embryo transfer alone can impact placental development. Furthermore, superovulation further induced overgrowth of the placental junctional zone. Embryo transfer and superovulation defects were limited to these morphological changes, as we did not observe any differences in epigenetic profiles. IVF placentae, however, displayed hypomethylation of imprinting control regions of select imprinted genes and a global reduction in DNA methylation levels. Although we did not detect significant differences in DNA methylation in fetal brain or liver samples, rare IVF concepti displayed very low methylation and abnormal gene expression from the normally repressed allele. Our findings suggest that individual ART procedures cumulatively increase placental morphological abnormalities and epigenetic perturbations, potentially causing adverse neonatal and long-term health outcomes in offspring.
Bisphenol A (BPA) and other endocrine disrupting chemicals have been reported to induce negative effects on a wide range of physiological processes, including reproduction. In the female, BPA exposure increases meiotic errors, resulting in the production of chromosomally abnormal eggs. Although numerous studies have reported that estrogenic exposures negatively impact spermatogenesis, a direct link between exposures and meiotic errors in males has not been evaluated. To test the effect of estrogenic chemicals on meiotic chromosome dynamics, we exposed male mice to either BPA or to the strong synthetic estrogen, ethinyl estradiol during neonatal development when the first cells initiate meiosis. Although chromosome pairing and synapsis were unperturbed, exposed outbred CD-1 and inbred C3H/HeJ males had significantly reduced levels of crossovers, or meiotic recombination (as defined by the number of MLH1 foci in pachytene cells) by comparison with placebo. Unexpectedly, the effect was not limited to cells exposed at the time of meiotic entry but was evident in all subsequent waves of meiosis. To determine if the meiotic effects induced by estrogen result from changes to the soma or germline of the testis, we transplanted spermatogonial stem cells from exposed males into the testes of unexposed males. Reduced recombination was evident in meiocytes derived from colonies of transplanted cells. Taken together, our results suggest that brief exogenous estrogenic exposure causes subtle changes to the stem cell pool that result in permanent alterations in spermatogenesis (i.e., reduced recombination in descendent meiocytes) in the adult male.
Millions of children have been born worldwide though assisted reproductive technologies (ART). Consistent with the Developmental Origins of Health and Disease hypothesis, there is concern that ART can induce adverse effects, especially because procedures coincide with epigenetic reprogramming events. Although the majority of studies investigating the effects of ART have focused on perinatal outcomes, more recent studies demonstrate that ART-conceived children may be at increased risk for postnatal effects. Here, we present the current epidemiological evidence that ART-conceived children have detectable differences in blood pressure, body composition, and glucose homeostasis. Similar effects are observed in the ART mouse model, which have no underlying infertility, suggesting that cardiometabolic effects are likely caused by ART procedures and not due to reasons related to infertility. We propose that the mouse system can, consequently, be used to adequately study, modify, and improve outcomes for ART children.
Although widely used, assisted reproductive technologies (ARTs) are associated with adverse perinatal outcomes. To elucidate their underlying causes, we have conducted a longitudinal analysis of placental development and fetal growth using a mouse model to investigate the effects of individual ART procedures: hormone stimulation, in vitro fertilization (IVF), embryo culture and embryo transfer. We demonstrate that transfer of blastocysts naturally conceived without hormone stimulation and developed in vivo prior to transfer can impair early placentation and fetal growth, but this effect normalizes by term. In contrast, embryos cultured in vitro before transfer do not exhibit this compensation but rather display placental overgrowth, reduced fetal weight, reduced placental DNA methylation and increased levels of sFLT1, an anti-angiogenic protein implicated in causing the maternal symptoms of preeclampsia in humans. Increases in sFLT1 observed in this study suggest that IVF procedures could increase the risk for preeclampsia. Moreover, our results indicate that embryo culture is the major factor contributing to most placental abnormalities and should therefore be targeted for optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.