In recent years several high profile projects have questioned the repeatability and validity of scientific research in the fields of psychology and medicine. In general, these studies have shown or estimated that less than 50% of published research findings are true or replicable even when no breaches of ethics are made. This high percentage stems from widespread poor study design; either through the use of underpowered studies or designs that allow the introduction of bias into the results. In this work, we have aimed to assess, for the first time, the prevalence of good study design in the field of tribology. A set of simple criteria for factors such as randomisation, blinding, use of control and repeated tests has been made. These criteria have been used in a mass review of the output of five
Productivity in micro-milling is hindered by premature fracture of tools and difficulty predicting wear. This work builds upon previous investigations into tool wear mechanisms and coatings for micro-mills.The technology readiness level of this work exceeds previous studies by investigating the micro-mills for practical applications and comparing this data. 0.5 mm micro end mills are tested with different coatings on CuZn38, and wear curves produced both in the case of simple straight slot testing and milling of complex parts representing industrial applications. The results show that curves produced using straight slots can be used to predict the behaviour of tools used to machine industrial parts. Due to interrupted cutting, tools used in straight slot tests reach the end of steady state wear after approximately 12 s of cutting as compared with 170 s in continuous milling. Typical cutting forces seen for the tools are in the order of 2–4 N. Catastrophic failure is seen towards the end of tool life for a TiAlN tool with a cutting force of over 30 N seen. For the first time a comparison has been made between fundamental tool wear studies and tool wear observed when producing test pieces representative to micro-industrial parts. This presents a novel perspective on tool wear and facilitates the integrating of existing micro-milling research into industry
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.