Cerebral hypoxia-ischemia produces major alterations in energy metabolism and glucose utilization in brain. The facilitative glucose transporter proteins mediate the transport of glucose across the blood-brain barrier (BBB) (55 kDa GLUT1) and into the neurons and glia (GLUT3 and 45 kDa GLUT1). Glucose uptake and utilization are low in the immature rat brain, as are the levels of the glucose transporter proteins. This study investigated the effect of cerebral hypoxia-ischemia in a model of unilateral brain damage on the expression of GLUT1 and GLUT3 in the ipsilateral (damaged, hypoxic-ischemic) and contralateral (undamaged, hypoxic) hemispheres of perinatal rat brain. Early in the recovery period, both hemispheres exhibited increased expression of BBB GLUT1 and GLUT3, consistent with increased glucose transport and utilization. Further into recovery, BBB GLUT1 increased and neuronal GLUT3 decreased in the damaged hemisphere only, commensurate with neuronal loss.
Insulin-like growth factor I (IGF-I) is an anabolic pleiotrophic factor essential for postnatal rat brain development, especially during the first 21 days, the "critical growth period." Cerebral hypoxic-ischemic insults occurring during the perinatal period can result in neuronal necrosis and permanent brain damage. To understand the regulation of the action of IGF-I in response to such a metabolic insult, we investigated the gene expression of IGF-I, type I IGF receptor, IGF binding protein (IGFBP)2, and IGFBP5 during the first 72 h after hypoxia-ischemia in the immature rat. At 1 h of recovery, messenger RNA (mRNA) levels of all IGF system components were decreased throughout the hemisphere ipsilateral to the carotid artery ligation. This decrease is more pronounced at 24 h of recovery, especially in areas vulnerable to hypoxic-ischemic injury, such as the thalamus and hippocampus. At 72 h of recovery, although IGFBP2 and type 1 IGF receptor mRNA levels remain suppressed, gene expression of both IGF-I and IGFBP5 was activated in reactive astrocytes.Therefore, during the critical growth period in rats, the transcriptional levels of all IGF system components are extremely sensitive to metabolic perturbations associated with cerebral hypoxia-ischemia. The immediate decrease in IGF-I gene expression may be partially responsible for the impending neuronal death and selective vulnerability of myelinogenesis during the perinatal period.
Hypoxia-ischemia induces apoptotic and necrotic cell death, which results partially from persistent alterations in cellular energy homeostasis. Insulin-like growth factor I (IGF-I) is an anabolic pleiotrophic factor required by developing neurons for their optimal proliferation, differentiation, and survival. To determine how cell death and changes in IGF-I gene expression relate to the extent of hypoxia-ischemia, we evaluated the time course of apoptosis in a neonatal hypoxia-ischemia model in relation to the cellular distribution of IGF-I and IGFBP5 mRNA. Severe hypoxia-ischemia results in an immediate decrease in neuronal IGF-I and IGFBP5 mRNA. The decrease in neuronal IGF-I mRNA was concurrent with an increase in the number of apoptotic cells. It is conceivable that the immediate decrease in IGF-I gene expression may contribute to the impending neuronal death and selective vulnerability of myelinogenesis during the perinatal period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.