Decision-support tools (DSTs) synthesize complex information to assist environmental managers in the decision-making process. Here, we review DSTs applied in the Baltic Sea area, to investigate how well the ecosystem approach is reflected in them, how different environmental problems are covered, and how well the tools meet the needs of the end users. The DSTs were evaluated based on (i) a set of performance criteria, (ii) information on end user preferences, (iii) how end users had been involved in tool development, and (iv) what experiences developers/hosts had on the use of the tools. We found that DSTs frequently addressed management needs related to eutrophication, biodiversity loss, or contaminant pollution. The majority of the DSTs addressed human activities, their pressures, or environmental status changes, but they seldom provided solutions for a complete ecosystem approach. In general, the DSTs were scientifically documented and transparent, but confidence in the outputs was poorly communicated. End user preferences were, apart from the shortcomings in communicating uncertainty, well accounted for in the DSTs. Although end users were commonly consulted during the DST development phase, they were not usually part of the development team. Answers from developers/hosts indicate that DSTs are not applied to their full potential. Deeper involvement of end users in the development phase could potentially increase the value and impact of DSTs. As a way forward, we propose streamlining the outputs of specific DSTs, so that they can be combined to a holistic insight of the consequences of management actions and serve the ecosystem approach in a better manner.
Decision support tools (DSTs), like models, GIS-based planning tools and assessment tools, play an important role in incorporating scientific information into decision-making and facilitating policy implementation. In an interdisciplinary Baltic research group, we compiled 43 DSTs developed to support ecosystem-based management of the Baltic Sea and conducted a thorough review. Analyzed DSTs cover a wide variety of policy issues (e.g., eutrophication, biodiversity, human uses) and address environmental as well as socioeconomic aspects. In this study, we aim to identify gaps between existing DSTs and end-user needs for DSTs for supporting coastal and marine policy implementation, and to provide recommendations for future DST development. In two online surveys, we assess the awareness and use of DSTs in general, as well as policy implementation challenges and DST needs of representatives of public authorities from all Baltic countries, in particular. Through a policy review we identify major policy issues, policies, and general implementation steps and requirements and develop the synthesis-matrix, which is used to compare DST demand and supply. Our results show that DSTs are predominantly used by researchers. End-users from public authorities use DSTs mostly as background information. Major obstacles for DST use are lacking awareness and experiences. DST demand is strongest for the policy issue eutrophication. Furthermore, DSTs that support the development of plans or programs of measures and assess their impacts and effectiveness are needed. DST supply is low for recently emerging topics, such as non-indigenous species, marine litter, and underwater noise. To overcome existing obstacles, a common database for DSTs available in the BSR is needed. Furthermore, end-users need guidance and training, and cooperation between DST developers and end-users needs to be enhanced to ensure the practical relevance of DSTs for supporting coastal and marine policy implementation. To fill existing gaps, DSTs that address impacts on human welfare and link environmental and socioeconomic
Global sustainability challenges associated with increasing resource demands from a growing population call for resource-efficient land-use strategies that address multiple sustainability issues. Multifunctional agroforestry-based phytoremediation (MAP) is one such strategy that can simultaneously capture carbon, decontaminate soils, and provide diverse incomes for local farmers. Chinandega, Nicaragua, is a densely populated agricultural region with heavily polluted soils. Four different MAP systems scenarios relevant to Chinandega were created and carbon sequestration potentials were calculated using CO2FIX. All scenarios showed the potential to store significantly more carbon than conventional farming practices, ranging from 2.5 to 8.0 Mg CO2eq ha−1 yr−1. Overall, carbon sequestration in crops is relatively small, but results in increased soil organic carbon (SOC), especially in perennials, and the combination of crops and trees provide higher carbon sequestration rates than monoculture. Changes in SOC are crucial for long-term carbon sequestration, here ranging between 0.4 and 0.9 Mg C ha−1 yr−1, with the most given in scenario 4, an alley cropping system with pollarded trees with prunings used as green mulch. The adoption rate of multifunctional strategies providing both commodity and non-commodity outputs, such as carbon sequestration, would likely increase if phytoremediation is included. Well-designed MAP systems could help reduce land-use conflicts, provide healthier soil, act as climate change mitigation, and have positive impacts on local health and economies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.