Opioids create a neuroinflammatory response within the CNS, compromising opioid-induced analgesia and contributing to various unwanted actions. How this occurs is unknown but has been assumed to be via classic opioid receptors. Herein, we provide direct evidence that morphine creates neuroinflammation via the activation of an innate immune receptor and not via classic opioid receptors. We demonstrate that morphine binds to an accessory protein of Toll-like receptor 4 (TLR4), myeloid differentiation protein 2 (MD-2), thereby inducing TLR4 oligomerization and triggering proinflammation. Small-molecule inhibitors, RNA interference, and genetic knockout validate the TLR4/MD-2 complex as a feasible target for beneficially modifying morphine actions. Disrupting TLR4/MD-2 protein-protein association potentiated morphine analgesia in vivo and abolished morphine-induced proinflammation in vitro, the latter demonstrating that morphine-induced proinflammation only depends on TLR4, despite the presence of opioid receptors. These results provide an exciting, nonconventional avenue to improving the clinical efficacy of opioids.protein-protein interaction | pain management therapy | drug discovery
Opioid action was thought to exert reinforcing effects solely via the initial agonism of opioid receptors. Here we present evidence for an additional novel contributor to opioid reward: the innate immune pattern-recognition receptor, Toll-like receptor 4 (TLR4), and its MyD88-dependent signaling. Blockade of TLR4/MD2 by administration of the non-opioid, unnatural isomer of naloxone, (+)-naloxone (rats), or two independent genetic knockouts of MyD88-TLR4-dependent signaling (mice), suppressed opioid-induced conditioned place preference. (+)-Naloxone also reduced opioid (remifentanil) self-administration (rats), another commonly used behavioral measure of drug reward. Moreover, pharmacological blockade of morphine-TLR4/MD2 activity potently reduced morphine-induced elevations of extracellular dopamine in rat nucleus accumbens, a region critical for opioid reinforcement. Importantly, opioid-TLR4 actions are not a unidirectional influence on opioid pharmacodynamics, since TLR4 −/− mice had reduced oxycodone-induced p38 and JNK phosphorylation, whilst displaying potentiated analgesia. Similar to our recent reports of morphine-TLR4/MD2 binding, here we provide a combination of in silico and biophysical data to support (+)-naloxone and remifentanil binding to TLR4/MD2. Collectively, these data indicate that the actions of opioids at classical opioid receptors, together with their newly identified TLR4/MD2 actions, affect the mesolimbic dopamine system which amplifies opioid-induced elevations in extracellular dopamine levels and therefore possibly explaining altered opioid reward behaviors. Thus, the discovery of TLR4/MD2 recognition of opioids as foreign xenobiotic substances adds to the existing hypothesized neuronal reinforcement mechanisms, identifies a new drug target in TLR4/MD2 for the treatment of addictions, and provides further evidence supporting a role for central proinflammatory immune signaling in drug reward.
Proinflammatory central immune signaling contributes significantly to the initiation and maintenance of heightened pain states. Recent discoveries have implicated the innate immune system, pattern recognition Toll-like receptors in triggering these proinflammatory central immune signaling events. These exciting developments have been complemented by the discovery of neuronal expression of Toll-like receptors, suggesting pain pathways can be activated directly by the detection of pathogen associated molecular patterns or danger associated molecular patterns. This review will examine the evidence to date implicating Toll-like receptors and their associated signaling components in heightened pain states. In addition, insights into the impact Toll-like receptors have on priming central immune signaling systems for heightened pain states will be discussed. The influence possible sex differences in Toll-like receptor signaling have for female pain and the recognition of small molecule xenobiotics by Toll-like receptors will also be reviewed.
Morphine-3-glucoronide (M3G) is a major morphine metabolite detected in cerebrospinal fluid of humans receiving systemic morphine. M3G has little-to-no affinity for opioid receptors and induces pain by unknown mechanisms. The pain-enhancing effects of M3G have been proposed to significantly and progressively oppose morphine analgesia as metabolism ensues. We have recently documented that morphine activates toll-like receptor-4 (TLR4), beyond its classical actions on μ-opioid receptors. This suggests that M3G may similarly activate TLR4. This activation could provide a novel mechanism for M3G-mediated pain enhancement, as (a) TLR4 is predominantly expressed by microglia in spinal cord and (b) TLR4 activation releases pain-enhancing substances, including interleukin-1 (IL1). We present in vitro evidence that M3G activates TLR4, an effect blocked by TLR4 inhibitors, and that M3G activates microglia to produce IL1. In vivo, intrathecal M3G (0.75 μg) induced potent allodynia and hyperalgesia, blocked or reversed by interleukin-1 receptor antagonist, minocycline (microglial inhibitor), and (+)-and (−)-naloxone. This latter study extends our prior demonstrations that TLR4 signaling is inhibited by naloxone nonstereoselectively. These results with (+)-and (−)-naloxone also demonstrate that the effects cannot be accounted for by actions at classical, stereoselective opioid receptors. Hyperalgesia (allodynia was not tested) and in vitro M3G-induced TLR4 signaling were both blocked by 17-DMAG, an inhibitor of heat shock protein 90 (HSP90) that can contribute to TLR4 signaling. Providing further evidence of proinflammatory activation, M3G upregulated TLR4 and CD11b (microglial/macrophage activation marker) mRNAs in dorsal spinal cord as well as IL1 protein in the lumbosacral cerebrospinal fluid. Finally, in silico and in vivo data support that the glucuronic acid moiety is capable of inducing TLR4/MD-2 activation and enhanced pain. These data provide the first evidence for a TLR4 and IL1 mediated component to M3G-induced effects, likely of at least microglial origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.