BackgroundMost evidence for TSC-associated neuropsychiatric disorders (TAND) to date have come from small studies and case reports, and very little is known about TAND in adults. We explored baseline TAND data from the large-scale international TOSCA natural history study to compare childhood and adult patterns, describe age-based patterns, and explore genotype-TAND correlations.ResultsThe study enrolled 2216 eligible participants with TSC from 170 sites across 31 countries at the data cut-off for the third interim analysis (data cut-off date: September 30, 2015). The most common behavioural problems (reported in > 10% of participants) were overactivity, sleep difficulties, impulsivity, anxiety, mood swings, severe aggression, depressed mood, self-injury, and obsessions. Psychiatric disorders included autism spectrum disorder (ASD, 21.1%), attention deficit hyperactivity disorder (ADHD, 19.1%), anxiety disorder (9.7%), and depressive disorder (6.1%). Intelligence quotient (IQ) scores were available for 885 participants. Of these, 44.4% had normal IQ, while mild, moderate, severe, and profound degrees of intellectual disability (ID) were observed in 28.1, 15.1, 9.3, and 3.1%, respectively. Academic difficulties were identified in 58.6% of participants, and neuropsychological deficits (performance <5th percentile) in 55.7%. Significantly higher rates of overactivity and impulsivity were observed in children and higher rates of anxiety, depressed mood, mood swings, obsessions, psychosis and hallucinations were observed in adults. Genotype-TAND correlations showed a higher frequency of self-injury, ASD, academic difficulties and neuropsychological deficits in TSC2. Those with no mutations identified (NMI) showed a mixed pattern of TAND manifestations. Children and those with TSC2 had significantly higher rates of intellectual disability, suggesting that age and genotype comparisons should be interpreted with caution.ConclusionsThese results emphasize the magnitude of TAND in TSC and the importance of evaluating for neuropsychiatric comorbidity in all children and adults with TSC, across TSC1 and TSC2 genotypes, as well as in those with no mutations identified. However, the high rates of unreported or missing TAND data in this study underline the fact that, even in expert centres, TAND remains underdiagnosed and potentially undertreated.
Polycystin-1 (PC-1) is a large plasma-membrane receptor encoded by the PKD1 gene mutated in autosomal dominant polycystic kidney disease (ADPKD). Although the disease is thought to be recessive on a molecular level, the precise mechanism of cystogenesis is unclear, although cytoarchitecture defects seem to be the most likely initiating events. Here we show that PC-1 regulates the actin cytoskeleton in renal epithelial cells (MDCK) and induces cell scattering and cell migration. All of these effects require phosphatidylinositol 3-kinase (PI3-K) activity. Consistent with these observations Pkd1؊/؊ mouse embryonic fibroblasts (MEFs) have reduced capabilities to migrate compared with controls. PC-1 overexpressing MDCK cells are able to polarize normally with proper adherens and tight junctions formation, but show quick reabsorption of ZO-1, E-cadherin, and -catenin upon wounding of a monolayer and a transient epithelial-tomesenchymal transition (EMT) that favors a rapid closure of the wound and repolarization. Finally, we show that PC-1 is able to control the turnover of cytoskeletal-associated -catenin through activation of GSK3. Expression of a nondegradable form of -catenin in PC-1 MDCK cells restores strong cell-cell mechanical adhesion. We propose that PC-1 might be a central regulator of epithelial plasticity and its loss results in impaired normal epithelial homeostasis.
Characterizing the relationships between genomic and phenotypic variation is essential to understanding disease etiology. Information-dense data sets derived from pathophysiological, proteomic and transcriptomic profiling have been applied to map quantitative trait loci (QTLs). Metabolic traits, already used in QTL studies in plants, are essential phenotypes in mammalian genetics to define disease biomarkers. Using a complex mammalian system, here we show chromosomal mapping of untargeted plasma metabolic fingerprints derived from NMR spectroscopic analysis in a cross between diabetic and control rats. We propose candidate metabolites for the most significant QTLs. Metabolite profiling in congenic strains provided evidence of QTL replication. Linkage to a gut microbial metabolite (benzoate) can be explained by deletion of a uridine diphosphate glucuronosyltransferase. Mapping metabotypic QTLs provides a practical approach to understanding genome-phenotype relationships in mammals and may uncover deeper biological complexity, as extended genome (microbiome) perturbations that affect disease processes through transgenomic effects may influence QTL detection.
Renal angiomyolipomas are one of the most common renal manifestations in patients with tuberous sclerosis complex (TSC), with potentially life-threatening complications and a poor prognosis. Despite the considerable progress in understanding TSC-associated renal angiomyolipomas, there are no large scale real-world data. The aim of our present study was to describe in detail the prevalence and outcome of renal angiomyolipomas in patients with TSC, enrolled into the TuberOus SClerosis registry to increase disease Awareness (TOSCA) from 170 sites across 31 countries worldwide. We also sought to evaluate the relationship of TSC-associated renal angiomyolipomas with age, gender Kingswood et al. Prevalence and Outcome of Renal Angiomyolipomas in TSC and genotype. The potential risk factors for renal angiomyolipoma-related bleeding and chronic kidney disease (CKD) were studied in patients who participated in the TOSCA renal angiomyolipoma substudy. Of the 2,211 eligible patients, 1,062 (48%) reported a history of renal angiomyolipomas. The median age of TSC diagnosis for the all subjects (n = 2,211) was 1 year. The median age of diagnosis of renal angiomyolipoma in the 1,062 patients was 13 years. Renal angiomyolipomas were significantly more prevalent in female patients (p < 0.0001). Rates of angiomyolipomas >3 cm (p = 0.0119), growing lesions (p = 0.0439), and interventions for angiomyolipomas (p = 0.0058) were also higher in females than males. Pre-emptive intervention for renal angiomyolipomas with embolisation, surgery, or mammalian target of rapamycin (mTOR) inhibitor may have abolished the gender difference in impaired renal function, hypertension, and other complications. The rate of interventions for angiomyolipomas was less common in children than in adults, but interventions were reported in all age groups. In the substudy of 76 patients the complication rate was too low to be useful in predicting risk for more severe CKD. In addition, in this substudy no patient had a renal hemorrhage after commencing on an mTOR inhibitor. Our findings confirmed that renal angiomyolipomas in subjects with TSC1 mutations develop on average at the later age, are relatively smaller in size and less likely to be growing; however, by age 40 years, no difference was observed in the percentage of patients with TSC1 and TSC2 mutations needing intervention. The peak of appearance of new renal angiomyolipomas was observed in patients aged between 18 and 40 years, but, given that angiomyolipomas can occur later, lifelong surveillance is necessary. We found that pre-emptive intervention was dramatically successful in altering the outcome compared to historical controls; with high pre-emptive intervention rates but low rates of bleeding and other complications. This validates the policy of surveillance and pre-emptive intervention recommended by clinical guidelines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.