Thyronamines T0AM and T1AM are naturally occurring decarboxylated thyroid hormone derivatives. Their in vivo administration induces effects opposite to those induced by thyroid hormone, including lowering of body temperature. Since the mitochondrial energy-transduction apparatus is known to be a potential target of thyroid hormone and its derivatives, we investigated the in vitro effects of T0AM and T1AM on the rates of O2 consumption and H2O2 release by rat liver mitochondria. Hypothyroid animals were used because of the low levels of endogenous thyronamines. We found that both compounds are able to reduce mitochondrial O2 consumption and increase H2O2 release. The observed changes could be explained by a partial block, operated by thyronamines, at a site located near the site of action of antimycin A. This hypothesis was confirmed by the observation that thyronamines reduced the activity of Complex III where the site of antimycin action is located. Because thyronamines exerted their effects at concentrations comparable to those found in hepatic tissue, it is conceivable that they can affect in vivo mitochondrial O2 consumption and H2O2 production acting as modulators of thyroid hormone action.
SUMMARYExposure of homeothermic animals to low environmental temperature is associated with oxidative stress in several body tissues. Because cold exposure induces a condition of functional hyperthyroidism, the observation that tissue oxidative stress also happens in experimental hyperthyroidism, induced by 3,5,3Ј-triiodothyronine (T 3 ) treatment, suggests that this hormone is responsible for the oxidative damage found in tissues from cold-exposed animals. Examination of T 3 -responsive tissues, such as brown adipose tissue (BAT) and liver, shows that changes in factors favoring oxidative modifications are similar in experimental and functional hyperthyroidism. However, differences are also apparent, likely due to the action of physiological regulators, such as noradrenaline and thyroxine, whose levels are different in cold-exposed and T 3 -treated animals. To date, there is evidence that biochemical changes underlying the thermogenic response to cold as well as those leading to oxidative stress require a synergism between T 3 -and noradrenaline-generated signals. Conversely, available results suggest that thyroxine (T 4 ) supplies a direct contribution to cold-induced BAT oxidative damage, but contributes to the liver response only as a T 3 precursor.
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.Page 1
AbstractWe studied liver oxidative capacity and O 2 consumption in hypothyroid rats treated for 10 days with T 4 , or T 3 , or treated for 10 days with T 3 and exposed to cold for the last two days. The metabolic response of homogenates and mitochondria indicated that all treatments increased the synthesis of respiratory chain components, whereas only the cold induced mitochondrial proliferation. Determination of mRNA and protein expression of transcription factor activators, such as NRF-1 and NRF-2, and coactivators, such as PGC-1, showed that mRNA levels, except PGC-1 ones, were not related to aerobic capacities. Conversely, a strong correlation was found was between cytochrome oxidase activity and PGC-1 or NRF-2 protein levels.Such a correlation was not found for NRF-1. Our results strongly support the view that in rat liver PGC-1 and NRFs are responsible for the iodothyronine-induced increases in respiratory chain components, whereas their role in cold-induced mitochondrial proliferation needs to be further on clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.