We present a framework for estimating average and conditional effects of a discrete treatment variable on a continuous outcome variable, conditioning on categorical and continuous covariates. Using the new approach, termed the EffectLiteR approach, researchers can consider conditional treatment effects given values of all covariates in the analysis and various aggregates of these conditional treatment effects such as average effects, effects on the treated, or aggregated conditional effects given values of a subset of covariates. Building on structural equation modeling, key advantages of the new approach are (1) It allows for latent covariates and outcome variables; (2) it permits (higher order) interactions between the treatment variable and categorical and (latent) continuous covariates; and (3) covariates can be treated as stochastic or fixed. The approach is illustrated by an example, and open source software EffectLiteR is provided, which makes a detailed analysis of effects conveniently accessible for applied researchers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.