AimChemotherapy with doxorubicin is limited by cardiotoxicity. Free radical generation and mitochondrial dysfunction are thought to contribute to doxorubicin-induced cardiac failure. In this study we wanted to investigate if opening of mitochondrial KATP-channels by diazoxide is protective against doxorubicin cardiotoxicity, and if 5-hydroxydecanoate (5-HD), a selective mitochondrial KATP-channel antagonist, abolished any protection by this intervention.MethodsWistar rats were divided into 7 groups (n = 6) and followed for 10 days with 5 intervention groups including the following treatments: (1) Diazoxide and doxorubicin, (2) diazoxide and 5-hydroxydecanoate (5-HD), (3) 5-HD and doxorubicin, (4) diazoxide and saline and (5) 5-HD and saline. On day 1, 3, 5 and 7 the animals received intraperitoneal (i.p.) injections with 10 mg/kg diazoxide and/or 40 mg/kg 5-HD, 30 minutes before i.p. injections with 3.0 mg/kg doxorubicin. One control group received only saline injections and the other control group received saline 30 minutes prior to 3.0 mg/kg doxorubicin. On day 10 the hearts were excised and Langendorff-perfused. Cardiac function was assessed by an intraventricular balloon and biochemical effects by release of hydrogen peroxide (H2O2) and troponin-T (TnT) in effluate from the isolated hearts, and by myocardial content of doxorubicin.ResultsDoxorubicin treatment produced a significant loss in left ventricular developed pressure (LVDP) (p < 0.05) and an increase in both H2O2 and TnT release in effluate (p < 0.05). Diazoxide significantly attenuated the decrease in LVDP (p < 0.05) and abolished the increased release of H2O2 and TnT (p < 0.05). 5-HD abolished the effects of pretreatment with diazoxide, and these effects were not associated with reduced myocardial accumulation of doxorubicin.ConclusionsPretreatment with diazoxide attenuates doxorubicin-induced cardiac dysfunction in the rat, measured by physiological indices and TnT and H2O2 in effluate from isolated hearts. The effect could be mediated by opening of mitochondrial KATP-channels, reduced doxorubicin-associated free radical generation and decreased cardiomyocyte damage. Diazoxide represents a promising protective intervention against doxorubicin-induced acute cardiotoxicity.
Interventions to reduce the cardiotoxicity of doxorubicin are clinically relevant. Pharmacological preconditioning mimicking ischemic preconditioning has been demonstrated with morphine and represents an acceptable clinical intervention. The purpose of this study was to examine if pretreatment in vivo with morphine could reduce doxorubicin-induced cardiotoxicity ex vivo in a rat model. Wistar rats were divided into six groups and pretreated with an intraperitoneal (i.p.) injection of 3 or 10 mg/kg morphine, 1 mg/kg naloxone and saline, 1 mg/kg naloxone and 3 mg/kg morphine or saline, 60 min before excision of the heart. Biochemical indices such as troponin T (TnT) and hydrogen peroxide (H2O2) in effluate were measured together with physiological parameters in Langendorff hearts before and after doxorubicin infusion (2 mg/mL 0.05 mL/min for 45 min). Myocardial content of doxorubicin was measured at the end of infusion. Pretreatment with morphine, irrespective of dosage, produced a significant loss in left ventricular-developed pressure and an increase of TnT and H2O2 in effluate before doxorubicin infusion (p < 0.05). Morphine also produced a significant increase in left ventricular end-diastolic pressure and an increase of TnT and H2O2 in effluate (p < 0.05) at the end of doxorubicin infusion. Naloxone, a non-selective opioid receptor antagonist, abolished the effects of morphine both before and after doxorubicin infusion. Morphine, irrespective of dosage, increased myocardial content of doxorubicin compared to pretreatment with saline (p < 0.05). Pretreatment with morphine is associated with a cardiodepressive effect and enhances cardiotoxicity of doxorubicin measured by increased myocardial accumulation of doxorubicin and physiological and biochemical indices. The negative effects observed in our rat model are abolished by naloxone.
BackgroundElevated cardiac troponin levels are consistent with the diagnosis of an acute coronary syndrome, but may also represent adverse drug reactions. Psychostimulating drugs raise both blood pressure and heart rate, and case reports of sudden death, stroke, and myocardial infarction have led to regulatory and public concern about the cardiovascular safety of these drugs.Case presentationWe present a case where a 41-year-old Norwegian male with radiating chest pain, elevated troponins, and supraventricular tachycardia was hospitalized. Tentative diagnosis was acute coronary syndrome. Percutaneous coronary angiography, but not cardiac magnetic resonance imaging, was performed and medical antiplatelet treatment started. Because of an attention deficit/hyperactivity disorder the patient had recently increased his dose of methylphenidate, but still within the therapeutic dose range. Apart from venlafaxine, also in a therapeutic dose, the patient took no other drugs. An acute coronary syndrome was excluded during hospitalization, and a drug effect was suspected.ConclusionsWhen interpreting troponin results it is important to take into account the context of the patient’s clinical presentation, including the possibility of adverse drug reactions. The adverse drug reaction could include a combination of vasospasm and/or increased oxygen demand due to tachycardia. This case should be borne in mind before a diagnosis of myocardial infarction is given, or a decision to perform invasive coronary angiography is made in patients that use methylphenidate or related substances. Cardiac magnetic resonance imaging could be of diagnostic value in such cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.