Early environments can profoundly influence an organism in ways that persist over its life. In reptiles, early thermal environments (nest temperatures) can impact offspring phenotype and survival in important ways, yet we still lack an understanding of whether general trends exist and the magnitude of impact. Understanding these patterns is important in predicting how climate change will affect reptile populations and the role of phenotypic plasticity in buffering populations. We compiled data from 175 reptile studies to examine, and quantify, the effect of incubation temperature on phenotype and survival. Using meta-analytic approaches (standardized mean difference between incubation treatments, Hedges' g), we show that across all trait types examined there is, on average, a moderate to large magnitude of effect of incubation temperatures (absolute effect: |g| = 0.75). Unsurprisingly, this influence was extremely large for incubation duration, as predicted, with warmer temperatures decreasing incubation time overall (g = -8.42). Other trait types, including behaviour, physiology, morphology, performance, and survival experienced reduced, but still mostly moderate to large effects, with particularly strong effects on survival. Moreover, the impact of incubation temperature persisted at least one-year post-hatching, suggesting that these effects have the potential to impact fitness in the long term. The magnitude of effect increased as the change in temperature increased (e.g. 6°C versus 2°C) in almost all cases, and tended to decrease when temperatures of the treatments fluctuated around a mean temperature compared to when they were constant. The effect also depended on the mid-temperature of the comparison, but not in consistent ways, with some traits experiencing the greatest effects at extreme temperatures, while others did not. The highly heterogeneous nature of the effects we observe, along with a large amount of unexplained variability, indicates that the shape of reaction norms between phenotype and temperature, along with ecological and/or experimental factors, are important when considering general patterns. Our analyses provide new insights into the effects of incubation environments on reptile phenotype and survival and allow general, albeit coarse, predictions for taxa experiencing warming nest temperatures under climatic change.
Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early lifehistory demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of nests constructed, and depredation rate. Recruitment of female hatchlings was determined by stochastic variation in nest depredation and annual climate and also by the total nest production. Overall population demography depends more strongly on annual variation in climate and predation than it does on the intricacies of nest-specific biology. Finally, we demonstrate that recruitment of female hatchlings translates into recruitment of breeding females into the population, thus linking climate (and other) effects on early life stages to adult demographics. Abstract. Conditions experienced early in life can influence phenotypes in ecologically important ways, as exemplified by organisms with environmental sex determination. For organisms with temperature-dependent sex determination (TSD), variation in nest temperatures induces phenotypic variation that could impact population growth rates. In environments that vary over space and time, how does this variation influence key demographic parameters (cohort sex ratio and hatchling recruitment) in early life stages of populations exhibiting TSD? We leverage a 17-year data set on a population of painted turtles, Chrysemys picta, to investigate how spatial variation in nest vegetation cover and temporal variation in climate influence early life-history demography. We found that spatial variation in nest cover strongly influenced nest temperature and sex ratio, but was not correlated with clutch size, nest predation, total nest failure, or hatching success. Temporal variation in climate influenced percentage of total nest failure and cohort sex ratio, but not depredation rate, mean clutch size, or mean hatching success. Total hatchling recruitment in a year was influenced primarily by temporal variation in climate-independent factors, number of...
Under temperature-dependent sex determination (TSD), temperatures experienced by embryos during development determine the sex of the offspring. Consequently, populations of organisms with TSD have the potential to be strongly impacted by climatic warming that could bias offspring sex ratio, a fundamental demographic parameter involved in population dynamics. Moreover, many taxa with TSD are imperiled, so research on this phenomenon, particularly long-term field study, has assumed great urgency. Recently, turtles with TSD have joined the diverse list of taxa that have demonstrated population-level changes in breeding phenology in response to recent climate change. This raises the possibility that any adverse impacts of climate change on populations may be alleviated by individual plasticity in nesting phenology. Here, we examine data from a long-term study on a population of painted turtles (Chrysemys picta) to determine whether changes in phenology are due to individual plasticity and whether individual plasticity in the timing of nesting has the capacity to offset the sex ratio effects of a rise in climatic temperature. We find that individual females show plasticity in the date of first nesting each year, and that this plasticity depends on the climate from the previous winter. First nesting date is not repeatable within individuals, suggesting that it would not respond to selection. Sex ratios of hatchlings within a nest declined nonsignificantly over the nesting season. However, small increases in summer temperature had a much stronger effect on nest sex ratios than did laying nests earlier in the season. For this and other reasons, it seems unlikely that individual plasticity in the timing of nesting will offset the effects of climate change on sex ratios in this population, and we hypothesize that this conclusion applies to other populations with TSD.
Public data archiving has many benefits for society, but some scientists are reluctant to share their data. This Perspective offers some practical solutions to reduce costs and increase benefits for individual researchers.
Early life environments shape phenotypic development in important ways that can lead to long-lasting effects on phenotype and fitness. In reptiles, one aspect of the early environment that impacts development is temperature (termed 'thermal developmental plasticity'). Indeed, the thermal environment during incubation is known to influence morphological, physiological, and behavioral traits, some of which have important consequences for many ecological and evolutionary processes. Despite this, few studies have attempted to synthesize and collate data from this expansive and important body of research. Here, we systematically review research into thermal developmental plasticity across reptiles, structured around the key papers and findings that have shaped the field over the past 50 years. From these papers, we introduce a large database (the 'Reptile Development Database') consisting of 9,773 trait means across 300 studies examining thermal developmental plasticity. This dataset encompasses data on a range of phenotypes, including morphological, physiological, behavioral, and performance traits along with growth rate, incubation duration, sex ratio, and survival (e.g., hatching success) across all major reptile clades. Finally, from our literature synthesis and data exploration, we identify key research themes associated with thermal developmental plasticity, important gaps in empirical research, and demonstrate how future progress can be made through targeted empirical, meta-analytic, and comparative work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.