. Gap junctions are composed of a family of structural proteins called connexins, which oligomerize into intercellular channels and function to exchange low molecular weight metabolites and ions between adjacent cells . We have cloned a new member of the connexin family from lens cDNA, with a predicted molecular mass of 46 kD, called rat connexin46 (Cx46) . Since a full-length cDNA corresponding to the 2.8-kb mRNA was not obtained, the stop codon and surrounding sequences were confirmed from rat genomic DNA . The RNA coding for this protein is abundant in lens fibers and detectable in both myocardium and kidney. Western analysis of both rat and bovine lens membrane proteins, using the anti-MP70 monoclonal antibody 6-4-B2-C6 and three anti-peptide antibodies against Cx46 demonstrates that Cx46 and MP70 are different proteins. Immunocytochemistry demonstrates that both proteins are localized in the same lens fiber junctional maculae. Synthesis of Cx46 in either reticulocyte lysate or Xenopus oocytes yields a 46-kD polypeptide ; P junctions are composed of a family of membrane structural proteins, called connexins, which oligo-
Mutations in GJA5 may predispose patients to idiopathic atrial fibrillation by impairing gap-junction assembly or electrical coupling. Our data suggest that common diseases traditionally considered to be idiopathic may have a genetic basis, with mutations confined to the diseased tissue.
Connexin46 (cxn46) is a gap junctional protein that was cloned from a rat lens cDNA library. Expression of cxn46 in solitary Xenopus oocytes resulted in the development of a large time-and voltage-dependent current that was not observed in noninjected control oocytes or in oocytes injected with mRNA for cxn43 or cxn32. The cxn46-induced current activated at potentials positive to -20 inV. On repolarization to -40 mV, the current deactivated over a period of several seconds. Removal of external calcium caused a marked increase in the amplitude of the cxn46-induced current, shifted the steady-state activation curve to more negative potentials, and altered the kinetics of activation and deactivation. Increasing external calcium had the opposite effect. The ability of cxn46 to induce the formation of cell-to-cell channels was tested in the oocyte pair system. Oocyte pairs injected with cxn46 mRNA + antisense oligonucleotides for Xenopus cxn38 were strongly coupled. In contrast, oocyte pairs injected with antisense alone showed no coupling. The inactivation kinetics of the gap junctional channels resembled the deactivation kinetics of the cxn46-induced current in solitary oocytes.
A nonselective cation current activated by depolarization (Ic) is present in the nonjunctional membrane of Xenopus oocytes. This current shares a number of properties with hemi-gap-junctional currents induced by exogenous gap-junctional proteins in oocytes and with a nonjunctional current seen in teleost retinal horizontal cells including nonselective permeability to small cations, block by external divalent cations, and slow activation kinetics. Here we study the effects of depleting or overexpressing Cx38 on Ic. Antisense depletion of Cx38 caused a marked reduction in Ic and blocked endogenous gap-junctional coupling in oocyte pairs. Conversely, expression of cloned Cx38 in oocytes increased the amplitude of Ic and enhanced gap-junctional coupling. Furthermore, there appeared to be a close correlation between the temperature sensitivity of Ic and the temperature sensitivity of assembly of endogenous gap-junctional channels in oocyte pairs. These results suggest that Xenopus connexin38 is involved in the generation of Ic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.