Body size is intrinsically linked to metabolic rate and life-history traits, and is a crucial determinant of food webs and community dynamics. The increased temperatures associated with the urban-heat-island effect result in increased metabolic costs and are expected to drive shifts to smaller body sizes . Urban environments are, however, also characterized by substantial habitat fragmentation , which favours mobile species. Here, using a replicated, spatially nested sampling design across ten animal taxonomic groups, we show that urban communities generally consist of smaller species. In addition, although we show urban warming for three habitat types and associated reduced community-weighted mean body sizes for four taxa, three taxa display a shift to larger species along the urbanization gradients. Our results show that the general trend towards smaller-sized species is overruled by filtering for larger species when there is positive covariation between size and dispersal, a process that can mitigate the low connectivity of ecological resources in urban settings . We thus demonstrate that the urban-heat-island effect and urban habitat fragmentation are associated with contrasting community-level shifts in body size that critically depend on the association between body size and dispersal. Because body size determines the structure and dynamics of ecological networks , such shifts may affect urban ecosystem function.
The increasing urbanization process is hypothesized to drastically alter (semi‐)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno‐terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground‐ and web spiders, macro‐moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local‐scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape‐scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.
African elephants (Loxodonta africana) play a vital role in most African ecosystems, with their opportunity to alter the entire ecosystem by their sheer numbers. Defining and measuring animal welfare has been much discussed. One potential way of determining an animal's welfare is to record the absence or presence of stress. Little research on elephant welfare has so far been performed in the Serengeti ecosystem. The aim of this study was to record the faecal glucocorticoid metabolite levels of African elephants in areas with high or with minimum human interference. A total of 117 faecal samples were collected from randomly located single elephants as well as family herds in the northern, central and western Serengeti National Park (SNP) as well as in Grumeti Game Reserve and Ikoma Open Area, northern Tanzania in 2010. Elephants had higher levels of faecal glucocorticoid metabolites in the areas outside, compared with areas inside SNP. No single males were observed outside SNP, and in general, higher abundance of elephants was observed inside SNP. This suggests that elephants may prefer to reside in the potential safer areas inside the national park, demonstrating the importance of protected areas to improve the welfare of elephants.
Because of its ability to expedite specimen identification and species delineation, the barcode index number (BIN) system presents a powerful tool to characterize hyperdiverse invertebrate groups such as the Acari (mites). However, the congruence between BINs and morphologically recognized species has seen limited testing in this taxon. We therefore apply this method towards the development of a barcode reference library for soil, poultry litter, and nest dwelling mites in the Western Palearctic. Through analysis of over 600 specimens, we provide DNA barcode coverage for 35 described species and 70 molecular taxonomic units (BINs). Nearly 80% of the species were accurately identified through this method, but just 60% perfectly matched (1:1) with BINs. High intraspecific divergences were found in 34% of the species examined and likely reflect cryptic diversity, highlighting the need for revision in these taxa. These findings provide a valuable resource for integrative pest management, but also highlight the importance of integrating morphological and molecular methods for fine-scale taxonomic resolution in poorly-known invertebrate lineages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.