SUMMARY Upon exposure to stress, tRNAs are enzymatically cleaved, yielding distinct classes of tRNA-derived fragments (tRFs). We identify a novel class of tRFs derived from tRNAGlu, tRNAAsp, tRNAGly, and tRNATyr that, upon induction, suppress the stability of multiple oncogenic transcripts in breast cancer cells by displacing their 3′UTRs from the RNA-binding protein YBX1. This mode of post-transcriptional silencing is sequence-specific, as these fragments all share a common motif that matches the YBX1 recognition sequence. Loss-of-function and gain-of-function studies, using antisense locked-nucleic acids (LNAs) and synthetic RNA mimetics respectively, revealed that these fragments suppress growth under serum-starvation, cancer cell invasion, and metastasis by breast cancer cells. Highly metastatic cells evade this tumor-suppressive pathway by attenuating the induction of these tRFs. Our findings reveal a tumor suppressive role for specific tRNA-derived fragments and describe a molecular mechanism for their action. This transcript displacement-based mechanism may generalize to other tRNA, ribosomal-RNA, and sno-RNA fragments.
Using a functional model of breast cancer heterogeneity, we previously showed that clonal sub-populations proficient at generating circulating tumour cells were not all equally capable of forming metastases at secondary sites. A combination of differential expression and focused in vitro and in vivo RNA interference screens revealed candidate drivers of metastasis that discriminated metastatic clones. Among these, asparagine synthetase expression in a patient's primary tumour was most strongly correlated with later metastatic relapse. Here we show that asparagine bioavailability strongly influences metastatic potential. Limiting asparagine by knockdown of asparagine synthetase, treatment with l-asparaginase, or dietary asparagine restriction reduces metastasis without affecting growth of the primary tumour, whereas increased dietary asparagine or enforced asparagine synthetase expression promotes metastatic progression. Altering asparagine availability in vitro strongly influences invasive potential, which is correlated with an effect on proteins that promote the epithelial-to-mesenchymal transition. This provides at least one potential mechanism for how the bioavailability of a single amino acid could regulate metastatic progression.
Decoding post-transcriptional regulatory programs in RNA is a critical step in the larger goal to develop predictive dynamical models of cellular behavior. Despite recent efforts1–3, the vast landscape of RNA regulatory elements remain largely uncharacterized. A longstanding obstacle is the contribution of local RNA secondary structure in defining interaction partners in a variety of regulatory contexts, including but not limited to transcript stability3, alternative splicing4 and localization3. There are many documented instances where the presence of a structural regulatory element dictates alternative splicing patterns (e.g. human cardiac troponin T) or affects other aspects of RNA biology5. Thus, a full characterization of post-transcriptional regulatory programs requires capturing information provided by both local secondary structures and the underlying sequence3,6. We have developed a computational framework based on context-free grammars3,7 and mutual information2 that systematically explores the immense space of small structural elements and reveals motifs that are significantly informative of genome-wide measurements of RNA behavior. The application of this framework to genome-wide mammalian mRNA stability data revealed eight highly significant elements with substantial structural information, for the strongest of which we showed a major role in global mRNA regulation. Through biochemistry, mass-spectrometry, and in vivo binding studies, we identified HNRPA2B1 as the key regulator that binds this element and stabilizes a large number of its target genes. Ultimately, we created a global post-transcriptional regulatory map based on the identity of the discovered linear and structural cis-regulatory elements, their regulatory interactions and their target pathways. This approach can also be employed to reveal the structural elements that modulate other aspects of RNA behavior.
Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activatorbinding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activatorbinding domains contribute additively to transcription activation and Mediator recruitment at Gcn4-and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.Activation of transcription, a key regulatory step in gene control, is the endpoint of many signal transduction pathways controlling cell growth, development, and the response to stress. Sequence-specific binding of transcription activators to gene regulatory regions initiates a cascade of events ultimately leading to the assembly of a functional transcription preinitiation complex (PIC) (52). This recruitment pathway involves the cooperative action of coactivator complexes and the transcription machinery (3,37,42,43,53). A subset of these coactivators (e.g., ATP-dependent remodelers and histone acetyltransferases) act to modify and remodel chromatin, allowing access of additional gene-specific factors and the transcription machinery to promoters, while other coactivators (e.g., SAGA, Mediator, and TFIID) directly interact with PolII and the general transcription factors to promote PIC assembly.Most of the activator-target interactions characterized to date involve activator-coactivator interactions rather than direct interactions with the general transcription factors (16,23,41,51,59,60,64,66), and individual activators are generally found to interact with multiple factors. However, for many of these activator-target contacts, it is not clear if the activatortarget contacts are promoter specific and why the requirement for specific coactivators varies at different promoters (12,43).The acidic transcription activators are an important and universal class of transcription factors that activate transcriptio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.