Certain mRNAs have been shown to be segregated in different cells in various metazoan embryos. These events represent aspects of autonomous mechanisms that establish particular embryonic cell fates and axial properties associated with asymmetric cell divisions. The spiralian lophotrochozoans (which include molluscs, annelids, nemerteans, gnathostomulids, dicyemid mesozoans, entoprocts, and platyhelminthes) exhibit a highly conserved pattern of early development that involves stereotypical, asymmetric cell divisions (termed "spiral cleavage"). Recently, it was demonstrated that various mRNAs are dynamically localized to the centrosomes in specific cells during early development in the gastropod mollusc, Ilyanassa obsoleta. During subsequent cell divisions, these messages become segregated in particular daughter cells, and it has been proposed that these events distinguish the developmental potential of these cells within the early embryo of I. obsoleta. The molecular mechanisms underlying these events, however, are still unknown. Here we show for the first time in another spiralian lophotrochozoan (the gastropod Crepidula fornicata) that similar patterns of mRNA localization take place during early development. To characterize the transcriptome of early development, and identify candidate genes for the expression analyses, high-throughput sequencing was carried out, via GS FLX Titanium 454 pyrosequencing. The annotated sequences have been made available as a resource for the scientific community (www.life.illinoi.edu/henry/crepidula_databases.html). Presumably, specific proteins associated with centrosomes may be important for these mRNA localization events. In silico sequence comparisons with known centriolar/centrosomal, ciliary/basal body proteomes shows that a large number of those proteins are represented in the collection of expressed sequence tags of C. fornicata annotated in this study. These data should be useful for future studies of the role of specific mRNAs in controlling cell fate and axial specification in the spiralian Lophotrochozoa, and for dissecting the underlying molecular mechanisms that accomplish these events.
In species of the frog genus Xenopus, lens regeneration occurs through a process of transdifferentiation, in which cornea epithelial cells presumably undergo dedifferentiation and subsequently redifferentiate to form a new lens. Experimental studies have shown that the retina provides the key signal(s) required to trigger this process once the original lens is removed. A previous study showed that addition of an exogenous Fibroblast Growth Factor (i.e., FGF1 protein) could initiate transdifferentiation of cornea epithelial cells in culture. To determine the role of FGF signaling in X. laevis lens regeneration, we have examined the presence of specific FGFs and their receptors (FGFRs) during this process and evaluated the necessity of FGFR signaling. RT-PCR analyses reveal that a number of FGF family members are expressed in cornea epithelium and retinal tissues both before and during the process of lens regeneration. Of these, FGF1, FGF8, and FGF9 are expressed principally in retinal tissue and not in the cornea epithelium. Hence, these ligands could represent key signaling factors originating from the retina that trigger regeneration. The results of experiments using an in vitro eye culture system and an FGFR inhibitor (SU5402) suggest that FGFR signaling is required for lens regeneration in Xenopus.
Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.