The RAFT-mediated nonaqueous dispersion polymerization of methyl acrylate in isododecane, a
nonsolvent for poly(methyl acrylate), was carried out using two soluble poly(2-ethylhexyl acrylate) macromolecular
RAFT agents, containing either a dithiobenzoate reactive function or a trithiocarbonate one. The method produced
stable colloidal particles, with hydrodynamic diameters below 100 nm. Using poly(2-ethylhexyl acrylate) with a
dithiobenzoate end group, strong rate retardation and poor control over the polymer chains were observed. In
contrast, when the trithiocarbonate-functionalized poly(2-ethylhexyl acrylate) was used, the formation of
monodisperse micellar aggregates of well-defined self-assembled block copolymers was obtained with fast
polymerization rates, irrespective of the RAFT agent concentration. Such differences were explained by the
dispersed state of the system rather than by the intrinsic reactivity of the soluble macromolecular RAFT agent.
The free-radical dispersion polymerization of methyl acrylate (MA) in isododecane was carried out in the presence of a poly(2-ethylhexyl acrylate) macromolecular RAFT (reversible addition-fragmentation chain transfer) agent bearing a trithiocarbonate reactive group in the middle of the chain (P2EHA-TTC). The presence of the trithiocarbonate function was crucial for the synthesis of monodisperse colloidal poly(methyl acrylate) (PMA) particles stabilized by the P2EHA segments. The hydrodynamic diameters ranged from 100 to 300 nm, using particularly low amounts of the macro(RAFT agent) (1-6 wt % vs. MA) in dispersion polymerizations carried out at 20 wt % solids content. As shown by 2D liquid chromatography, P2EHA-b-PMA or P2EHA-b-PMA-b-P2EHA block copolymers formed in situ at the early stage of the dispersion polymerization due to the reversible transfer process and played the role of particle stabilizer. The glass-transition temperature of the derived polymer films was not affected by the low amount of the chosen macromolecular stabilizer and the mechanical properties were mainly those of PMA, which makes the technique very attractive for coating applications.
For the precise characterization of block copolymers of 2-ethylhexyl acrylate (2EHA) and methyl acrylate (MA) produced via RAFT (reversible addition-fragmentation chain transfer)-mediated dispersion polymerization, novel liquid chromatographic separations have been developed. SEC showed multimodal molar mass distributions (MMD) and HPLC showed multimodal chemical composition distributions (CCD). The analyses of MMD and CCD of the reaction products indicated the formation of the expected block copolymer along with remaining P2EHA and PMA homopolymer fractions. Online coupling of SEC and gradient HPLC in a two-dimensional liquid chromatography (2D-LC) setup proved to be an efficient method to fractionate all polymer species present in the samples. Different kinds of copolymer molecules were identified in addition to the two homopolymers. The quantification of P2EHA using liquid chromatography at critical conditions (LC-CC) showed that the unreacted macro(RAFT agent) amount remained unchanged during at least the first 4 h of polymerization. LC-CC experiments also allowed the relative molar mass of the PMA blocks contained in the copolymers to be determined. The implementation of 2D-LC combining SEC and LC-CC allowed a more precise characterization of the different copolymer structures in particular in terms of block size. Finally, the results obtained by SEC/HPLC were confirmed by LC-1 H NMR (proton nuclear magnetic resonance) experiments. It was concluded that the dispersed state of the polymerization system was the important factor for the formation of broadly distributed, complex copolymers when using a dithiobenzoate-based reactive macromolecular stabilizer. The detailed characterization of the system highlighted the enhancement of irreversible termination at the interface of the dispersed particles.
The miniemulsion polymerization of styrene has been carried out using two pH-responsive cationic diblock macromonomers as reactive stabilizers. As a comparison, the analogous nonpolymerizable cationic diblock copolymer was also investigated. Each of these three stabilizers based on 2-(diethylaminoethyl)methacrylate and quaternized 2-(dimethylaminoethyl)methacrylate residues were prepared via oxyanionic polymerization and had relatively low polydispersities. It was found that all three copolymers were grafted to the polystyrene latex particles, as judged by X-ray photoelectron spectroscopy, aqueous electrophoresis and FTIR spectroscopy studies. Kinetics studies and colloidal characteristics indicated poorer stabilization properties of the partially quaternized diblock macromonomer and electron microscopy confirmed that the latexes invariably had relatively broad particle size distributions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.