Parametric Markov chains have been introduced as a model for families of stochastic systems that rely on the same graph structure, but differ in the concrete transition probabilities. The latter are specified by polynomial constraints for the parameters. Among the tasks typically addressed in the analysis of parametric Markov chains are (1) the computation of closed-form solutions for reachabilty probabilities and other quantitative measures and (2) finding symbolic representations of the set of parameter valuations for which a given temporal logical formula holds as well as (3) the decision variant of (2) that asks whether there exists a parameter valuation where a temporal logical formula holds. Our contribution to (1) is to show that existing implementations for computing rational functions for reachability probabilities or expected costs in parametric Markov chains can be improved by using fraction-free Gaussian elimination, a long-known technique for linear equation systems with parametric coefficients. Our contribution to (2) and (3) is a complexity-theoretic discussion of the model checking problem for parametric Markov chains and probabilistic computation tree logic (PCTL) formulas. We present an exponential-time algorithm for (2) and a PSPACE upper bound for (3). Moreover, we identify fragments of PCTL and subclasses of parametric Markov chains where (1) and (3) are solvable in polynomial time and establish NP-hardness for other PCTL fragments.
Consequence-based and automata-based algorithms encompass two families of approaches that have been thoroughly studied as reasoning methods for many logical formalisms. While automata are useful for finding tight complexity bounds, consequence-based algorithms are typically simpler to describe, implement, and optimize. In this paper, we show that consequence-based reasoning can be reduced to the emptiness test of an appropriately built automaton. Thanks to this reduction, one can focus on developing efficient consequence-based algorithms, obtaining complexity bounds and other benefits of automata methods for free.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.