Most studies of phenotypic plasticity investigate the effects of an individual environmental factor on organism phenotypes. However, organisms exist in an ecologically complex world where multiple environmental factors can interact to affect growth, development and life histories. Here, using a multifactorial experimental design, we examine the separate and interactive effects of two environmental factors, rearing host species (Vigna radiata, Vigna angularis and Vigna unguiculata) and temperature (20, 25, 30 and 35 degrees C), on growth and life history traits in two populations [Burkina Faso (BF) and South India (SI)] of the seed beetle, Callosobruchus maculatus. The two study populations of beetles responded differently to both rearing host and temperature. We also found a significant interaction between rearing host and temperature for body size, growth rate and female lifetime fecundity but not larval development time or larval survivorship. The interaction was most apparent for growth rate; the variance in growth rate among hosts increased with increasing temperature. However, the details of host differences differed between our two study populations; the degree to which V. unguiculata was a better host than V. angularis or V. radiata increased at higher temperatures for BF beetles, whereas the degree to which V. unguiculata was the worst host increased at higher temperatures for SI beetles. We also found that the heritabilities of body mass, growth rate and fecundity were similar among rearing hosts and temperatures, and that the cross-temperature genetic correlation was not affected by rearing host, suggesting that genetic architecture is generally stable across rearing conditions. The most important finding of our study is that multiple environmental factors can interact to affect organism growth, but the degree of interaction, and thus the degree of complexity of phenotypic plasticity, varies among traits and between populations.
We examine the inbreeding load for adult life span and mortality rates of two seed beetle species, Callosobruchus maculatus and Stator limbatus. Inbreeding load differs substantially between males and females in both study populations of C. maculatus-life span of inbred females was 9-13% shorter than the life span of outbred females, whereas the life span of inbred males did not differ from the life span of outbred males. The effect of inbreeding on female life span was largely due to an increase in the slope of the mortality curve. In contrast, inbreeding had only a small effect on the life span of S. limbatus-life spans of inbred beetles were $5% shorter than those of outbred beetles, and there was no difference in inbreeding load between the sexes. The inbreeding load for mean life span was $0.4-0.6 lethal equivalents per haploid gamete for female C. maculatus and $0.2-0.3 for both males and females of S. limbatus, all within the range of estimates commonly obtained for Drosophila. However, contrary to the predictions of mutation-accumulation models, inbreeding load for loci affecting mortality rates did not increase with age in either species, despite an effect of inbreeding on the initial rate of increase in mortality. This was because mortality rates decelerated with age and converged to a mortality plateau for both outbred and inbred beetles.T HE evolution of life span, mortality rates, and patterns of senescence is of substantial interest because there is tremendous variation in these traits at all taxonomic levels (Promislow 1991) and because of the medical implications of understanding the genetics underlying mortality rates. Studies on mice, Drosophila, and Caenorhabditis elegans have identified numerous genes that influence life span and/or rates of senescence (Harshman 2002). Recent studies of life span in Drosophila melanogaster indicate that inheritance of life span can be quite complex, with both dominance and epistasis having significant effects on variation in life span (Harshman 2002;Leips and Mackay 2002;Mackay 2002;Spencer et al. 2003;Spencer and Promislow 2005). These studies also show that the genetic architecture (number of genes and degree of allelic and genic interactions) underlying life span differs between the sexes and depends on the environmental conditions in which individuals are reared.One of the major genetic mechanisms proposed to underlie senescence is the accumulation in populations of late-acting deleterious alleles due to the declining force of selection with increasing age (mutation-accumulation theory) (Hughes and Reynolds 2005). Research has now identified many genes and chromosomal regions (QTL) that affect life span in model organisms but we have few data on the frequency of deleterious alleles affecting life span (De Luca et al. 2003;Carbone et al. 2006). We have less data on the sources of variation in deleterious alleles and the age specificity of expression of those alleles and thus their effects on age-specific mortality rates.Inbreeding studies are a com...
1. In many insects species, males contribute large nutritional gifts to females during mating, generally as seminal fluids (ejaculates) or spermatophores. These nuptial gifts can affect both male and female fitness, and can mediate selection on male body size. However, it is unclear how environmental variables, such as temperature and diet, affect gift size and the consequences of gift size for male and female fitness. 2. We examine how temperature and rearing host affect male nuptial gift size (both total ejaculate size and the proportion of a male's mass allocated to his seminal fluids), and the relationship between gift size and female reproduction, in two populations of the seed-feeding beetle Callosobruchus maculatus . 3. Males reared at lower temperature (20 ° C) produced substantially larger ejaculates than males reared at higher temperatures (25, 30 and 35 ° C). However, males allocated a smaller proportion of their body mass to their ejaculate at the lowest temperature compared with other temperatures. This effect of temperature on male allocation to their ejaculates mirrored the effect of temperature on female body size -male ejaculate size remained a relatively constant proportion of their mate's body mass across temperatures. 4. Rearing host also affected male ejaculate size but the magnitude and direction of the host effect differed between populations. 5. Rearing temperature affected the relationship between male body mass and ejaculate size. Temperature also affected the relationship between female body mass and fecundity. The relationship between male body mass and ejaculate size was significantly lower when beetles were reared on cowpea than when beetles were reared on azuki or mung. 6. We found no evidence that male body size or nuptial gift size affected female fecundity in either population of C. maculatus . We thus propose that the effect of nuptial gift size on male fitness is through a reduction in female mating frequency and thus increased paternity for males producing larger nuptial gifts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.