Traditional methods of measuring tree root biomass are labor intensive and destructive in nature. We studied the utility of ground-penetrating radar (GPR) to measure tree root biomass in situ within a replicated, intensive culture forestry experiment planted with loblolly pine (Pinus tneda L.). The study site was located in Decatur County, Georgia, in an area of the Troup and Lucy (loamy, kaolinitic, thermic Grossarenic Kandiuddts and Arenic Kandiudults, respectively) soils. With the aid of a digital signal processing GPR, estimates of root biomass to a depth of 30 cm were correlated to harvested root samples using soil cores. Significant effects of fertilizer application on signal attenuation were observed and corrected. The correlation coefficient between actual root biomass in soil cores and GPR estimates with corrections for fertilizer application were highly significant ( r = 0.86, n = GO, p < 0.0001). Where site conditions are favorable to radar investigation, GPR can be a powerful cost-effective tool to measure root biomass. Verification with some destructive harvesting is required since universal calibrations for root biomass are unlikely, even across similar soil types. Use of GPR can drastically reduce the number of soil cores needed to assess tree root biomass and biomass distribution. The quality and quantity of information resulting from a detailed GPR survey, combined with soil cores on a subset of plots, mn be used to rapidly estimate root biomass and provide a valuable assessment of lateral root biomass distribution and quantity.
Tropospheric ozone can affect crop yield and has been reported to cause reductions in growth and biomass of forest tree species in laboratory and glasshouse studies. However, linkages between growth and ambient ozone concentrations in the field are not well established for forest trees. Ambient ozone concentrations have been shown to cause foliar injury on a number of tree species throughout much of the eastern USA. Symptom expression is influenced by endogenous and exogenous factors and, therefore, ozone-exposure\tree-response relationships have been difficult to confirm. Clearly defined, cause-effect relationships between visible injury and growth losses due to ozone have not been validated. Generalizations of sensitivity of forest trees to ozone are complicated by tree development stage, microclimate, leaf phenology, compensatory processes, within-species variation and other interacting stresses. In general, decreases in above-ground growth at ambient ozone levels in the eastern USA appear to be in the range of 0-10 % per year. However, these conclusions are based on a small number of tree species, with the vast majority of studies involving individual tree seedlings in a non-competitive environment. Comparative studies of small and large trees indicate that seedlings are not suitable surrogates for predicting responses of mature trees to ozone. Process-level modelling is a promising methodology that has been recently utilized to assess ozone effects on a stand to regional scale, indicating that ozone is affecting forest growth in the eastern USA. The extent and magnitude of the response is variable and depends on many edaphic and climatic factors. It is imperative when conducting assessment exercises, however, that forest biologists constantly keep in mind the tremendous variability that exists within natural systems. Scaling of single site\physiological response phenomena from an individual tree to an ecosystem and\or region necessitates further research.
Changes in riparian woody plant assemblages are anticipated in the southeastern United States due to increases in urbanization rates. Because riparian forests serve important roles in maintaining water quality and biodiversity, understanding how they respond to urbanization is crucial. The objective of this study was to examine forest structure and woody vegetation diversity indices of riparian communities in response to an urbanization gradient in West Georgia, USA. Measures of forest structure and diversity were compared to measures of urbanization and land cover. Although Liquidambar styraciflua and Quercus nigra were dominant species in the forest stand and regeneration layer for all riparian communities, the invasive, non-native shrub Ligustrum sinense was the most dominant species observed in the regeneration layer for urban, developing, and agriculture communities. The proportion of non-native species in the forest stand and regeneration layer decreased and Shannon diversity of the regeneration layer increased with increasing distance from the urban center. Shifts in diversity indicate that anthropogenic disturbance may subdue the ability of diverse communities to resist non-native plant invasions.
We tested the hypothesis that productivity of intensively managed loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) stands is dependent not only on leaf area, but also on foliar photosynthetic rate. Effects of irrigation (irrigation treatment), irrigation with a fertilizer solution (fertigation treatment), and fertigation + pest control (loblolly pine only; fertigation + pest control treatment) on leaf physiology and growth were compared with control plots during the third and fourth growing seasons. Complete weed control was maintained on all plots. Aboveground net primary productivity of loblolly pine and sweetgum increased from 16.3 to 40.5 Mg ha(-1) and from 4.2 to 23.9 Mg ha(-1), respectively, in response to the most intensive treatment. Relative to the control treatment, neither fertigation of sweetgum nor fertigation + pest control of loblolly pine had a significant or consistent influence on foliar N concentration, quantum yield, carboxylation efficiency, net photosynthesis, stomatal conductance, or production efficiency (increment in woody biomass per unit leaf area). Irrigation increased predawn leaf water potential and photosynthesis of loblolly pine, but it had no effect on production efficiency. Leaf area was the predominant determinant of maximum productivity in these rapidly growing plantations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.