Arsenic is widely distributed in the environment by natural and human means. The potential for adverse health effects from inorganic arsenic depends on the level and route of exposure. To estimate potential health risks of inorganic arsenic, the apportionment of exposure among sources of inorganic arsenic is critical. In this study, daily inorganic arsenic intake of U.S. adults from food, water, and soil ingestion and from airborne particle inhalation was estimated. To account for variations in exposure across the U.S., a Monte Carlo approach was taken using simulations for 100,000 individuals representing the age, gender, and county of residence of the U.S. population based on census data. Our analysis found that food is the greatest source of inorganic arsenic intake and that drinking water is the next highest contributor. Inhalation of airborne arsenic-containing particles and ingestion of arsenic-containing soils were negligible contributors. The exposure is best represented by the ranges of inorganic arsenic intake (at the 10 th and 90 th percentiles), which were 1.8 to 11.4 µg/day for males and 1.3 to 9.4 µg/day for females. Regional differences in inorganic arsenic exposure were due mostly to consumption of drinking water containing differing inorganic arsenic content rather than to food preferences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.