For most of the last decade, the south-western portion of the United States has experienced a severe and enduring drought. This has caused serious concerns about water supply and management in the region. In this research, 30 orthorectified Landsat satellite images from the United States Geological Service (USGS) Earth Explorer archive were analyzed for the 1972 to 2009 period. The images encompassed Lake Mead (a major reservoir in this region) and were examined for changes in water surface area. Decadal lake area minimums/maximums were achieved in 1972/1979, 1981/1988, 1991/1998, and 2009/2000
Urban greenspace is important for the health of cities. Up-to-date databases and information are vital to maintain and monitor growth in cities. During the last decade, advances in spaceborne hyperspectral sensors have resulted in some advantages being gained over multispectral sensors for land cover monitoring (due to increased spectral resolution). The objective of this research was to compare Earth Observing-1 (EO-1) Hyperion hyperspectral data to Landsat 5 Thematic Mapper (TM) and Satellite Probatoire d'Observation de la Terre (SPOT) 5 multispectral data for land cover classification in a dense urban landscape. For comparative analysis, orthorectified aerial imagery provided by the Toronto and Region Conservation Authority (TRCA) was used as ground truth data for accuracy assessment. This study utilized conventional and segmented principal components (CPCA and SPCA) for data compression on the Hyperion imagery, and used principal components analysis (PCA) as a visual enhancement technique for multispectral imagery. Image processing including the generation of the normalized difference vegetation index (NDVI), and mean texture was also performed for both Landsat and SPOT sensors. Unsupervised iterative self-organizing data analysis (ISODATA) classification procedures were performed on all images to produce land cover classification maps for a portion of the Lower Don River in Toronto, Ontario, Canada. Experiments conducted in this research demonstrated that hyperspectral imagery produced a higher overall accuracy (5-6% better) than multispectral data with the same resolution for defining vegetation cover. In addition, SPOT generated greater accuracy results than Landsat or Hyperion for vegetation classes. It was found that conventional Hyperion and segmented Hyperion methods outperformed the Landsat 5 TM sensor for vegetation differences (for tree canopy and open green spaces).
For most of the last decade, the south-western portion of the United States has experienced a severe and enduring drought. This has caused serious concerns about water supply and management in the region. In this research, 30 orthorectified Landsat satellite images from the United States Geological Service (USGS) Earth Explorer archive were analyzed for the 1972 to 2009 period. The images encompassed Lake Mead (a major reservoir in this region) and were examined for changes in water surface area. Decadal lake area minimums/maximums were achieved in 1972/1979, 1981/1988, 1991/1998, and 2009/2000. The minimum lake area extent occurred in 2009 (356.4 km2), while the maximum occurred in 1998 (590.6 km2). Variable trends in water level and lake area were observed throughout the analysis period, however progressively lower values were observed since 2000. The Landsat derived lake areas show a very strong relationship with actual measured water levels at the Hoover Dam. Yearly water level variations at the dam vary minimally from the satellite derived estimates. A complete (yearly) record of satellite images may have helped to reduce the slight deviations in the time series.
For most of the last decade, the south-western portion of the United States has experienced a severe and enduring drought. This has caused serious concerns about water supply and management in the region. In this research, 30 orthorectified Landsat satellite images from the United States Geological Service (USGS) Earth Explorer archive were analyzed for the 1972 to 2009 period. The images encompassed Lake Mead (a major reservoir in this region) and were examined for changes in water surface area. Decadal lake area minimums/maximums were achieved in 1972/1979, 1981/1988, 1991/1998, and 2009/2000. The minimum lake area extent occurred in 2009 (356.4 km2), while the maximum occurred in 1998 (590.6 km2). Variable trends in water level and lake area were observed throughout the analysis period, however progressively lower values were observed since 2000. The Landsat derived lake areas show a very strong relationship with actual measured water levels at the Hoover Dam. Yearly water level variations at the dam vary minimally from the satellite derived estimates. A complete (yearly) record of satellite images may have helped to reduce the slight deviations in the time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.