During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.
Background
Microorganisms are not only indispensable to ecosystem functioning, they are also keystones for emerging technologies. In the last 15 years, the number of studies on environmental microbial communities has increased exponentially due to advances in sequencing technologies, but the large amount of data generated remains difficult to analyze and interpret. Recently, metabarcoding analysis has shifted from clustering reads using Operational Taxonomical Units (OTUs) to Amplicon Sequence Variants (ASVs). Differences between these methods can seriously affect the biological interpretation of metabarcoding data, especially in ecosystems with high microbial diversity, as the methods are benchmarked based on low diversity datasets.
Results
In this work we have thoroughly examined the differences in community diversity, structure, and complexity between the OTU and ASV methods. We have examined culture-based mock and simulated datasets as well as soil- and plant-associated bacterial and fungal environmental communities. Four key findings were revealed. First, analysis of microbial datasets at family level guaranteed both consistency and adequate coverage when using either method. Second, the performance of both methods used are related to community diversity and sample sequencing depth. Third, differences in the method used affected sample diversity and number of detected differentially abundant families upon treatment; this may lead researchers to draw different biological conclusions. Fourth, the observed differences can mostly be attributed to low abundant (relative abundance < 0.1%) families, thus extra care is recommended when studying rare species using metabarcoding. The ASV method used outperformed the adopted OTU method concerning community diversity, especially for fungus-related sequences, but only when the sequencing depth was sufficient to capture the community complexity.
Conclusions
Investigation of metabarcoding data should be done with care. Correct biological interpretation depends on several factors, including in-depth sequencing of the samples, choice of the most appropriate filtering strategy for the specific research goal, and use of family level for data clustering.
Peptides derived from non-functional precursors play important roles in various developmental processes, but also in (a)biotic stress signaling. Our (phospho)proteome-wide analyses of C-terminally encoded peptide 5 (CEP5)-mediated changes revealed an impact on abiotic stress-related processes. Drought has a dramatic impact on plant growth, development and reproduction, and the plant hormone auxin plays a role in drought responses. Our genetic, physiological, biochemical and pharmacological results demonstrated that CEP5-mediated signaling is relevant for osmotic and drought stress tolerance in Arabidopsis, and that CEP5 specifically counteracts auxin effects. Specifically, we found that CEP5 signaling stabilizes AUX/IAA transcriptional repressors, suggesting the existence of a novel peptide-dependent control mechanism that tunes auxin signaling. These observations align with the recently described role of AUX/IAAs in stress tolerance and provide a novel role for CEP5 in osmotic and drought stress tolerance.
The yam nematode, Scutellonema bradys, is a major threat to yam (Dioscorea spp.) production across yam-growing regions. In West Africa, this species cohabits with many morphologically similar congeners and, consequently, its accurate diagnosis is essential for control and for monitoring its movement. In the present study, 46 Scutellonema populations collected from yam rhizosphere and yam tubers in different agro-ecological zones in Ghana and Nigeria were characterised by their morphological features and by sequencing of the D2-D3 region of the 28S rDNA gene and the mitochondrial COI genes. Molecular phylogeny, molecular species delimitation and morphology revealed S. bradys, S. cavenessi, S. clathricaudatum and three undescribed species from yam rhizosphere. Only S. bradys was identified from yam tuber tissue, however. For barcoding and identifying Scutellonema spp., the most suitable marker used was the COI gene. Additionally, 99 new Scutellonema sequences were generated using populations obtained also from banana, carrot, maize and tomato, including the first for S. paralabiatum and S. clathricaudatum, enabling the development of a dichotomous key for identification of Scutellonema spp. The implications of these results are discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.