The contribution of toxic 02 metabolites to cerebral ischemia reperfusion injury has not been determined. We found that gerbils subjected to temporary unilateral carotid artery occlusion (ischemia) consistently developed neurologic deficits during ischemia with severities that correlated with increasing degrees of brain edema and brain H202 levels after reperfusion. In contrast, gerbils treated just before reperfusion (after ischemia) with dimethylthiourea (DMTU), but not urea, had decreased brain edema and brain H202 levels. In addition, gerbils fed a tungsten-rich diet for 4, 5, or 6 wk developed progressive decreases in brain xanthine oxidase (XO) and brain XO + xanthine dehydrogenase (XD) activities, brain edema, and brain H202 levels after temporary unilateral carotid artery occlusion and reperfusion. In contrast to tungsten-treated gerbils, allopurinol-treated gerbils did not have statistically significant decreases in brain XO or XO + XD levels, and reduced brain edema and brain H202 levels occurred only in gerbils developing mild but not severe neurologic deficits during ischemia. Finally, gerbils treated with DMTU or tungsten all survived, while > 60% of gerbils treated with urea, allopurinol, or saline died by 48 h after temporary unilateral carotid artery occlusion and reperfusion. Our findings indicate that H202 from XO contributes to reperfusion-induced edema in brains subjected to temporary ischemia.
We found that rats subjected to thermal skin injury (skin burn) had increased serum xanthine oxidase (XO) activities, increased serum complement activation (decreased serum CH50 levels), increased erythrocyte (RBC) fragility, increased lung neutrophil accumulation, and increased lung leak compared to sham-treated rats. Treatment of rats with allopurinol (an XO inhibitor) not only decreased serum XO activity, but also decreased complement activation, RBC fragility, lung neutrophil accumulation, and lung leak abnormalities in rats subjected to skin burn. We conclude that XO may contribute to acute lung injury and a number of events associated with the development of acute lung leak following skin burn.
We found that rats subjected to thermal skin injury (burn) had increased serum hydrogen peroxide (H2O2) scavenging activity, serum catalase activity, erythrocyte (RBC) fragility, and edematous lung injury (lung leak) when compared to sham-treated rats. Serum H2O2 scavenging activity was inhibited by addition of sodium azide, a catalase inhibitor. Treatment of rats with the oxygen radical scavenger, dimethylthiourea (DMTU), decreased RBC fragility and lung leak but did not alter increased H2O2 scavenging or catalase activity of serum from rats subjected to skin burn. We conclude that increased serum catalase activity is a consequence of thermal skin injury and that increased serum catalase activity may be a mechanism that modulates H2O2-dependent processes following skin burn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.