The oncogenic EBV protein LMP1 mimics a dysregulated CD40 receptor in vitro. To compare CD40 and LMP1-mediated events in vivo, transgenic mice were engineered to express mouse CD40 (mCD40tg) or a protein with extracellular mCD40 and cytoplasmic LMP1 (mCD40-LMP1tg). Transgenic and CD40(-/-) mice were bred so that only the transgenic CD40 molecule is expressed in B cells, macrophages, and dendritic cells. mCD40-LMP1tg mice had normal lymphocyte subsets, and immunization elicited an antibody response featuring normal isotype switching, affinity maturation, and germinal center (GC) formation. However, unimmunized mCD40-LMP1tg mice had expanded immature and germinal center B cells, produced autoantibodies, exhibited marked splenomegaly and lymphadenopathy, and elevated serum IL-6. Thus, signaling through the LMP1 cytoplasmic tail results in amplified and abnormal mimicry of CD40 functions in vivo, indicating possible ways in which LMP1 contributes to the pathogenesis of EBV-associated human disease.
Latent membrane protein 1 (LMP1) is an EBV-encoded transforming protein that strongly mimics the B cell-activating properties of a normal cellular membrane protein, CD40. LMP1 and CD40 both associate with the cytoplasmic adapter proteins called TNFR-associated factors (TRAFs). TRAFs 1, 2, and 3 bind to a region of LMP1 that is essential for EBV to transform B lymphocytes, carboxyl-terminal activating region (CTAR) 1. However, studies of transiently overexpressed LMP1 molecules, primarily in epithelial cells, indicated that a second region, CTAR2, is largely responsible for LMP1-mediated activation of NF-κB and c-Jun N-terminal kinase. To better understand LMP1 signaling in B lymphocytes, we performed a structure-function analysis of the LMP1 C-terminal cytoplasmic domain stably expressed in B cell lines. Our results demonstrate that LMP1-stimulated Ig production, surface molecule up-regulation, and NF-κB and c-Jun N-terminal kinase activation require both CTAR1 and CTAR2, and that these two regions may interact to mediate LMP1 signaling. Furthermore, we find that the function of CTAR1, but not CTAR2, correlates with TRAF binding and present evidence that as yet unidentified cytoplasmic proteins may associate with LMP1 to mediate some of its signaling activities.
The CD94/NKG2C killer lectin-like receptor (KLR) specific for HLA-E is coupled to the KARAP/DAP12 adapter in a subset of NK cells, triggering their effector functions. We have studied the distribution and function of this KLR in T lymphocytes. Like other NK cell receptors (NKR), CD94/NKG2C was predominantly expressed by a CD8(+) T cell subset, though TCRgammadelta(+) NKG2C(+) and rare CD4(+) NKG2C(+) cells were also detected in some individuals. Coculture with the 721.221 HLA class I-deficient lymphoma cell line transfected with HLA-E (.221-AEH) induced IL-2Ralpha expression in CD94/NKG2C+ NK cells and a minor subset of CD94/NKG2C(+) T cells, promoting their proliferation; moreover, a similar response was triggered upon selective engagement of CD94/NKG2C with a specific mAb. CD8(+) TCRalphabeta CD94/NKG2C(+) T cell clones, that displayed different combinations of KIR and CD85j receptors, expressed KARAP/DAP12 which was co-precipitated by an anti-CD94 mAb. Specific engagement of the KLR triggered cytotoxicity and cytokine production in CD94/NKG2C(+) T cell clones, inducing as well IL-2Ralpha expression and a proliferative response. Altogether these results support that CD94/NKG2C may constitute an alternative T cell activation pathway capable of driving the expansion and triggering the effector functions of a CTL subset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.