The aim of the present article is to introduce a concept which allows to generalise the notion of Poissonian pair correlation, a second-order equidistribution property, to higher dimensions. Roughly speaking, in the one-dimensional setting, the pair correlation statistics measures the distribution of spacings between sequence elements in the unit interval at distances of order of the mean spacing 1/N . In the d-dimensional case, of course, the order of the mean spacing is 1/N 1 d , and -in our concept-the distance of sequence elements will be measured by the supremum-norm.Additionally, we show that, in some sense, almost all sequences satisfy this new concept and we examine the link to uniform distribution. The metrical pair correlation theory is investigated and it is proven that a class of typical low-discrepancy sequences in the high-dimensional unit cube do not have Poissonian pair correlations, which fits the existing results in the one-dimensional case.
In this paper we review recently established results on the asymptotic behaviour of the trigonometric product P n (α) = n r=1 |2 sin πrα| as n → ∞. We focus on irrationals α whose continued fraction coefficients are bounded. Our main goal is to illustrate that when discussing the regularity of P n (α), not only the boundedness of the coefficients plays a role; also their size, as well as the structure of the continued fraction expansion of α, is important.
The goal of this overview article is to give a tangible presentation of the breakthrough works in discrepancy theory [3, 5] by M. B. Levin. These works provide proofs for the exact lower discrepancy bounds of Halton’s sequence and a certain class of (t, s)-sequences. Our survey aims at highlighting the major ideas of the proofs and we discuss further implications of the employed methods. Moreover, we derive extensions of Levin’s results.
Niederreiter and Halton sequences are two prominent classes of higher-dimensional sequences which are widely used in practice for numerical integration methods because of their excellent distribution qualities. In this paper we show that these sequences—even though they are uniformly distributed—fail to satisfy the stronger property of Poissonian pair correlations. This extends already established results for one-dimensional sequences and confirms a conjecture of Larcher and Stockinger who hypothesized that the Halton sequences are not Poissonian. The proofs rely on a general tool which identifies a specific regularity of a sequence to be sufficient for not having Poissonian pair correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.