The paper assesses the impact of adding information on financial cycles on the output gap estimates for eight advanced economies using two unobserved components models: a reduced form extended Hodrick-Prescott filter, and a standard semi-structural unobserved components model. To complement these models, a semi-structural vector autoregression model is proposed in which only supply shocks are identified. The accuracy of the output gap estimates is assessed based on their performance in predicting recessions. The models with financial variables generally produce more accurate output gap estimates at the expense of increased real-time volatility. While the extended Hodrick-Prescott filter is particularly appealing for its real-time stability, it lags behind the two semi-structural models in terms of forecasting performance. The vector autoregression model augmented with financial variables features the best in-sample forecasting performance, and it has similar real-time prediction capabilities to the semi-structural unobserved components model. Overall, financial cycles appear to be relevant in Japan, Spain, the UK, and -to a lesser extent -in the US and in France, while they are relatively muted in Canada, Germany, and Italy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.