Long-term potentiation (LTP) can be induced in the lateral and basolateral amygdala by stimulating synaptic afferents in the external capsule (EC). We examined the sensitivity of amygdaloid LTP to the NMDA receptor antagonist 2-amino-5-phosphonopentanoate (AP5), which is known to block LTP induction in the Schaffer collateral/CA1 synapses in the hippocampus. While relatively high concentrations (100 microM) of DL-AP5 were effective in preventing LTP induction in the lateral and basolateral amygdala in vitro, the same concentrations also significantly depressed synaptic responses to low-frequency stimulation. Furthermore, at 50 microM, a concentration sufficient to block both synaptic responses mediated by NMDA receptors and LTP induction in the hippocampus and neocortex, AP5 did not affect the probability of inducing LTP in the amygdala. Application of 10 microM 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), which blocks non-NMDA excitatory amino acid receptors, reduced the monosynaptic response to EC stimulation by 85%. The remaining CNQX-insensitive response did not appear to be mediated by NMDA-type receptors, since it was not reduced by 50 or 100 microM AP5, and showed none of the voltage sensitivity characteristic of NMDA responses. These data suggest that while the induction of LTP in the amygdala produced by EC stimulation is blocked by high doses of AP5, plasticity at these synapses probably does not require activation of NMDA receptors.
Increases in the expression of immediate early genes have been shown to occur in the lumbar spinal cord dorsal horn after peripheral inflammation. Given that the pontine parabrachial nucleus has been implicated in nociceptive as well as antinociceptive processes and is reciprocally connected with the spinal cord dorsal horn, it seems likely that peripheral inflammation will cause alterations in immediate early gene expression in this nucleus. To test this hypothesis we examined cFos-like immunoreactivity in a rodent complete Freund's adjuvant-induced peripheral inflammatory model of persistent nociception. Unilateral hind paw injections of complete Freund's adjuvant produced inflammation, hyperalgesia of the affected limb, and alterations in open field behaviors. Immunocytochemical analysis demonstrated a bilateral increase in cFos-like immunoreactivity in the lateral and Kolliker-Fuse subdivisions of the parabrachial nucleus at 6 and 24 hours postinjection and an ipsilateral decrease below basal levels in the Kolliker-Fuse subdivision at 96 hours postinjection when compared to saline controls. Taken together, these results suggest that select parabrachial neurons are activated by noxious somatic inflammation. These active parabrachial neurons are likely to participate in ascending nociceptive and/or descending antinociceptive pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.