BackgroundCalmodulin (CaM) mutations have been identified recently in subjects with congenital long QT syndrome (LQTS) or catecholaminergic polymorphic ventricular tachycardia (CPVT), but the mechanisms responsible for these divergent arrhythmia‐susceptibility syndromes in this context are unknown. We tested the hypothesis that LQTS‐associated CaM mutants disrupt Ca2+ homeostasis in developing cardiomyocytes possibly by affecting either late Na current or Ca2+‐dependent inactivation of L‐type Ca2+ current.Methods and ResultsWe coexpressed CaM mutants with the human cardiac Na channel (NaV1.5) in tsA201 cells, and we used mammalian fetal ventricular cardiomyocytes to investigate LQTS‐ and CPVT‐associated CaM mutations (LQTS‐ and CPVT‐CaM). LQTS‐CaM mutants do not consistently affect L‐type Na current in heterologous cells or native cardiomyocytes, suggesting that the Na channel does not contribute to LQTS pathogenesis in the context of CaM mutations. LQTS‐CaM mutants (D96V, D130G, F142L) impaired Ca2+‐dependent inactivation, whereas the CPVT‐CaM mutant N54I had no effect on Ca2+‐dependent inactivation. LQTS‐CaM mutants led to loss of Ca2+‐transient entrainment with the rank order from greatest to least effect: CaM‐D130G~CaM‐D96V>>CaM‐F142L. This rank order follows measured Ca2+‐CaM affinities for wild‐type and mutant CaM. Acute isoproterenol restored entrainment for CaM‐130G and CaM‐D96V but caused irreversible cytosolic Ca2+ overload for cells expressing a CPVT‐CaM mutant.ConclusionsCaM mutations associated with LQTS may not affect L‐type Na+ current but may evoke defective Ca2+‐dependent inactivation of L‐type Ca2+ current.
Background Congenital long-QT syndrome (LQTS) may present during fetal development and can be life-threatening. The molecular mechanism for the unusual early onset of LQTS during fetal development is unknown. Objective We sought to elucidate the molecular basis for severe fetal LQTS presenting at 19-weeks gestation, the earliest known presentation of this disease. Methods Fetal magnetocardiography was used to demonstrated torsade de pointes and a prolonged rate-corrected QT interval. In vitro electrophysiological studies were performed to determine functional consequences of a novel SCN5A mutation found in the fetus. Results The fetus presented with episodes of ventricular ectopy progressing to incessant ventricular tachycardia and hydrops fetalis. Genetic analysis disclosed a novel, de novo heterozygous mutation in SCN5A (L409P) and a homozygous common variant (R558). In vitro electrophysiological studies demonstrated that the mutation in combination with R558 caused significant depolarized shifts in voltage-dependence of inactivation and activation, faster recovery from inactivation and a 7-fold greater level of persistent current. When the mutation was engineered in a fetal-expressed SCN5A splice isoform, channel dysfunction was markedly potentiated. Also, R558 alone in the fetal splice isoform evoked a large persistent current, hence both alleles were dysfunctional. Conclusion We report the earliest confirmed diagnosis of symptomatic LQTS, and present evidence that mutant cardiac sodium channel dysfunction is potentiated by a developmentally regulated alternative splicing event in SCN5A. Our findings provide a plausible mechanism for the unusual severity and early onset of cardiac arrhythmia in fetal LQTS.
T cells resistant to the immunosuppressive drug cyclosporin A (CsA) may be important mediators of chronic graft rejection. We previously reported that T cells activated in the presence of endothelial cells (EC) develop resistance to CsA, and initiate IL-2 secretion within 8–12 h of triggering. CsA normally blocks the phosphatase, calcineurin, thus preventing nuclear translocation of the transcription factor, NFAT. We find that in the presence but not the absence of EC, NFAT1 can be detected in the nuclei of CsA-treated T cells within 8 h of triggering, reaching a maximal level of 60% of control by 24 h. Glycogen synthase kinase-3β (GSK-3β), which rephosphorylates NFAT and promotes nuclear export, is inhibited by EC costimulation. GSK-3β is a component of the wnt signaling pathway, and EC express wnt-5a and T cells express frizzled-5, a wnt-5a receptor. Wnt-5a promotes T cell NFAT nuclear accumulation in the presence of CsA, an effect mimicked by Li+, a potent inhibitor of GSK-3β. The protein kinase C agonist PMA dramatically synergizes with both EC and wnt-5a in stimulating T cell IL-2 synthesis, and inhibition of either protein kinase C by Ro-31-8425 or G-proteins by pertussis toxin effectively blocks the actions of wnt-5a on T cells. Finally, a secreted, dominant-negative form of frizzled-5 blocks EC-mediated CsA resistance. Thus, EC promote CsA-resistant nuclear localization of NFAT and subsequent IL-2 synthesis through a noncanonical wnt-dependent pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.