Glucokinase (GK) activation as a potential strategy to treat type 2 diabetes (T2D) is well recognized. Compound 1, a glucokinase activator (GKA) lead that we have previously disclosed, caused reversible hepatic lipidosis in repeat-dose toxicology studies. We hypothesized that the hepatic lipidosis was due to the structure-based toxicity and later established that it was due to the formation of a thiourea metabolite, 2. Subsequent SAR studies of 1 led to the identification of a pyrazine-based lead analogue 3, lacking the thiazole moiety. In vivo metabolite identification studies, followed by the independent synthesis and profiling of the cyclopentyl keto- and hydroxyl- metabolites of 3, led to the selection of piragliatin, 4, as the clinical lead. Piragliatin was found to lower pre- and postprandial glucose levels, improve the insulin secretory profile, increase β-cell sensitivity to glucose, and decrease hepatic glucose output in patients with T2D.
The 1alpha-fluoro A-ring phosphine oxide 1, a useful building block for fluorinated vitamin D analogues, was synthesized from (S)-carvone in 13 synthetic steps, and only five isolations, in 22% overall yield. In the key synthetic step, a highly selective palladium-catalyzed isomerization of dieneoxide 18 to dieneol 20 was achieved using an appropriately selected fluorinated alcohol as a catalytic proton source.
The 1 alpha-hydroxy A-ring phosphine oxide 1, a useful building block for vitamin D analogues, was synthesized from (S)-carvone in nine synthetic operations and a single chromatographic purification in 25% overall yield. The synthesis features two novel efficient synthetic transformations: the Criegee rearrangement of alpha-methoxy hydroperoxyacetate 10 in methanol to obtain directly the desired secondary 3 beta-alcohol 11 and the highly chemo- and stereoselective isomerization of dieneoxide ester (E)-7 to the 1 alpha-allylic alcohol with an exocyclic double bond (E)-8. Further insight into the selectivity control of the latter rearrangement was obtained from the reactions of (Z)-epimeric substrates. The new synthetic approach leading to the 1 alpha-hydroxy epimers complements our previously reported synthesis of the corresponding 1 beta-epimers, thus producing all stereoisomers of these versatile building blocks efficiently from carvone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.