Chemical carcinogenesis follows a multistep process involving both mutation and increased cell proliferation. Oxidative stress can occur through overproduction of reactive oxygen and nitrogen species through either endogenous or exogenous insults. Important to carcinogenesis, the unregulated or prolonged production of cellular oxidants has been linked to mutation (induced by oxidant-induced DNA damage), as well as modification of gene expression. In particular, signal transduction pathways, including AP-1 and NFkappaB, are known to be activated by reactive oxygen species, and they lead to the transcription of genes involved in cell growth regulatory pathways. This review examines the evidence of cellular oxidants' involvement in the carcinogenesis process, and focuses on the mechanisms for production, cellular damage produced, and the role of signaling cascades by reactive oxygen species.
Carcinogenesis is a multistep process involving mutation and the subsequent selective clonal expansion of the mutated cell. Chemical and physical agents including those that induce reative oxygen species can induce and/or modulate this multistep process. Several modes of action by which carcinogens induce cancer have been identified, including through production of reactive oxygen species (ROS). Oxidative damage to cellular macromolecules can arise through overproduction of ROS and faulty antioxidant and/or DNA repair mechanisms. In addition, ROS can stimulate signal transduction pathways and lead to activation of key transcription factors such as Nrf2 and NF-kB. The resultant altered gene expression patterns evoked by ROS contribute to the carcinogenesis process. Recent evidence demonstrates an association between a number of single nucleotide polymorphisms (SNPs) in oxidative DNA repair genes and antioxidant genes with human cancer susceptibility. These aspects of ROS biology will be discussed in the context of their relationship to carcinogenesis.
Oxidative stress results when the balance between the production of reactive oxygen species (ROS) overrides the antioxidant capability of the target cell; oxidative damage from the interaction of reactive oxygen with critical cellular macromolecules may occur. ROS may interact with and modify cellular protein, lipid, and DNA, which results in altered target cell function. The accumulation of oxidative damage has been implicated in both acute and chronic cell injury including possible participation in the formation of cancer. Acute oxidative injury may produce selective cell death and a compensatory increase in cell proliferation. This stimulus may result in the formation of newly initiated preneoplastic cells and/or enhance the selective clonal expansion of latent initiated preneoplastic cells. Similarly, sublethal acute oxidative injury may produce unrepaired DNA damage and result in the formation of new mutations and, potentially, new initiated cells. In contrast, sustained chronic oxidative injury may lead to a nonlethal modification of normal cellular growth control mechanisms. Cellular oxidative stress can modify intercellular communication, protein kinase activity, membrane structure and function, and gene expression, and result in modulation of cell growth. We examined the role of oxidative stress as a possible mechanism by which nongenotoxic carcinogens may function. In studies with the selective mouse liver carcinogen dieldrin, a species-specific and dose-dependent decrease in liver antioxidant concentrations with a concomitant increase in ROS formation and oxidative damage was seen. This increase in oxidative stress correlated with an increase in hepatocyte DNA synthesis. Antioxidant supplementation prevented the dieldrin-induced cellular changes. Our findings suggest that the effect of nongenotoxic carcinogens (if they function through oxidative mechanisms) may be amplified in rodents but not in primates because of rodents' greater sensitivity to ROS. These results and findings reported by others support a potential role for oxidative-induced injury in the cancer process specifically during the promotion stage. Environ Health Perspect 1 06(Suppl 1):289-295 (1998). http.//ehpnetl.niehs.nih.gov/docs/1998/Suppl-1/ 289-295klaunig/abstract.html
Kupffer cells are resident macrophages of the liver and play an important role in its normal physiology and homeostasis as well as participating in the acute and chronic responses of the liver to toxic compounds. Activation of Kupffer cells directly or indirectly by toxic agents results in the release of an array of inflammatory mediators, growth factors, and reactive oxygen species. This activation appears to modulate acute hepatocyte injury as well as chronic liver responses including hepatic cancer. Understanding the role Kupffer cells play in these diverse responses is key to understanding mechanisms of liver injury. Idiosyncratic drug-induced liver disease results in morbidity and mortality, impacting severely on the development of new pharmacological agents. Modulation of the response of Kupffer cells by drugs has been suggested as a cause for the idiosyncratic response. Similarly, liver damage seen in chronic ethanol consumption appears to be modulated by Kupffer cell activation. More recent evidence has noted a contributory role of Kupffer cell activation in the process of hepatic carcinogenesis. Several nongenotoxic carcinogens, for example, activate Kupffer cells resulting in the release of cytokines and/or reactive oxygen species that induce hepatocyte cell proliferation and may enhance clonal expansion of preneoplastic cells leading to neoplasia. Kupffer cells therefore appear to play a central role in the hepatic response to toxic and carcinogenic agents. Taken together, the data presented in this symposium illustrate to the toxicologist the central role played by Kupffer cells in mediating hepatotoxicity.
Neuroimaging studies have begun to uncover the neural substrates of cancer and treatment-related cognitive dysfunction, but the time course of these changes in the years following chemotherapy is unclear. This study analyzed multimodality 3T MRI scans to examine the structural and functional effects of chemotherapy and post-chemotherapy interval (PCI) in a cohort of breast cancer survivors (BCS; n=24; PCI mean 6, range 3β10 y) relative to age- and education-matched healthy controls (HC; n=23). Assessments included voxel-based morphometry (VBM) for gray matter density (GMD) and fMRI for activation profile during a 3-back working memory task. The relationships between brain regions associated with PCI and neuropsychological performance, self-reported cognition, and oxidative and direct DNA damage as measured in peripheral lymphocytes were assessed in secondary analyses. PCI was positively associated with GMD and activation on fMRI in the right anterior frontal region (Brodmann Areas 9 and 10) independent of participant age. GMD in this region was also positively correlated with global neuropsychological function. Memory dysfunction, cognitive complaints, and oxidative DNA damage were increased in BCS compared to HC. Imaging results indicated lower fMRI activation in several regions in the BCS group. BCS also had lower GMD than HC in several regions, and in these regions GMD was inversely related to oxidative DNA damage and learning and memory neuropsychological domain scores. This is the first study to show structural and functional effects of PCI and to relate oxidative DNA damage to brain alterations in BCS. The relationship between neuroimaging and cognitive function indicates the potential clinical relevance of these findings. The relationship with oxidative DNA damage provides a mechanistic clue warranting further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citationsβcitations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright Β© 2024 scite LLC. All rights reserved.
Made with π for researchers
Part of the Research Solutions Family.