The interaction between the amino-terminal transactivation domain (TAD) of p53 and TFIIH is directly correlated with the ability of p53 to activate both transcription initiation and elongation. We have identified a region within the p53 TAD that specifically interacts with the pleckstrin homology (PH) domain of the p62 and Tfb1 subunits of human and yeast TFIIH. We have solved the 3D structure of a complex between the p53 TAD and the PH domain of Tfb1 by NMR spectroscopy. Our structure reveals that p53 forms a nine residue amphipathic alpha helix (residues 47-55) upon binding to Tfb1. In addition, we demonstrate that diphosphorylation of p53 at Ser46 and Thr55 leads to a significant enhancement in p53 binding to p62 and Tfb1. These results indicate that a phosphorylation cascade involving Ser46 and Thr55 of p53 could play an important role in the regulation of select p53 target genes.
TP53 mutants (mutp53) are involved in the pathogenesis of most human cancers. Specific mutp53 proteins gain oncogenic functions (GOFs) distinct from the tumor suppressor activity of the wild-type protein. Tumor-associated macrophages (TAMs), a hallmark of solid tumors, are typically correlated with poor prognosis. Here, we report a non-cell-autonomous mechanism, whereby human mutp53 cancer cells reprogram macrophages to a tumor supportive and anti-inflammatory state. The colon cancer cells harboring GOF mutp53 selectively shed miR-1246-enriched exosomes. Uptake of these exosomes by neighboring macrophages triggers their miR-1246-dependent reprogramming into a cancer-promoting state. Mutp53-reprogammed TAMs favor anti-inflammatory immunosuppression with increased activity of TGF-β. These findings, associated with poor survival in colon cancer patients, strongly support a microenvironmental GOF role for mutp53 in actively engaging the immune system to promote cancer progression and metastasis.
Graphical Abstract Highlights d The exRNA Atlas provides access to human exRNA profiles and web-accessible tools d Atlas analysis reveals six exRNA cargo types present across five human biofluids d Five of the cargo types associate with specific vesicular and non-vesicular carriers d These findings and resources empower studies of extracellular RNA communication An extracellular RNA atlas from five human biofluids (serum, plasma, cerebrospinal fluid, saliva, and urine) reveals six extracellular RNA cargo types, including both vesicular and nonvesicular carriers. SUMMARY To develop a map of cell-cell communication mediated by extracellular RNA (exRNA), the NIH Extracellular RNA Communication Consortium created the exRNA Atlas resource (https://exrna-atlas.org). The Atlas version 4P1 hosts 5,309 exRNA-seq and exRNA qPCR profiles from 19 studies and a suite of analysis and visualization tools. To analyze variation between profiles, we apply computational deconvolution. The analysis leads to a model with six exRNA cargo types (CT1, CT2, CT3A, CT3B, CT3C, CT4), each detectable in multiple biofluids (serum, plasma, CSF, saliva, urine). Five of the cargo types associate with known vesicular and non-vesicular (lipoprotein and ribonucleoprotein) exRNA carriers. To validate utility of this model, we re-analyze an exercise response study by deconvolution to identify physiologically relevant response pathways that were not detected previously.To enable wide application of this model, as part of the exRNA Atlas resource, we provide tools for deconvolution and analysis of user-provided case-control studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.