We describe a directed evolution approach that should find broad application in generating enzymes that meet predefined process-design criteria. It augments recombination-based directed evolution by incorporating a strategy for statistical analysis of protein sequence activity relationships (ProSAR). This combination facilitates mutation-oriented enzyme optimization by permitting the capture of additional information contained in the sequence-activity data. The method thus enables identification of beneficial mutations even in variants with reduced function. We use this hybrid approach to evolve a bacterial halohydrin dehalogenase that improves the volumetric productivity of a cyanation process approximately 4,000-fold. This improvement was required to meet the practical design criteria for a commercially relevant biocatalytic process involved in the synthesis of a cholesterol-lowering drug, atorvastatin (Lipitor), and was obtained by variants that had at least 35 mutations.
The development of a green-by-design, two-step, three-enzyme process for the synthesis of a key intermediate in the manufacture of atorvastatin, the active ingredient of the cholesterol lowering drug Lipitor R , is described. The first step involves the biocatalytic reduction of ethyl-4-chloroacetoacetate using a ketoreductase (KRED) in combination with glucose and a NADP-dependent glucose dehydrogenase (GDH) for cofactor regeneration. The (S) ethyl-4-chloro-3-hydroxybutyrate product is obtained in 96% isolated yield and >99.5% e.e. In the second step, a halohydrin dehalogenase (HHDH) is employed to catalyse the replacement of the chloro substituent with cyano by reaction with HCN at neutral pH and ambient temperature. The natural enzymes were highly selective but exhibited productivities that were insufficient for large scale application. Consequently, in vitro enzyme evolution using gene shuffling technologies was employed to optimise their performance according to predefined criteria and process parameters. In the case of the HHDH reaction, this afforded a 2500-fold improvement in the volumetric productivity per biocatalyst loading. This enabled the economical and environmentally attractive production of the key hydroxynitrile intermediate. The overall process has an E factor (kg waste per kg product) of 5.8 when process water is not included, and 18 if included.
Recent in vivo studies indicate that ring monooxygenation is a widespread mechanism by which bacteria metabolize aromatic hydrocarbons and obtain carbon and energy. In this study, toluene 2-monooxygenase from Burkholderia (formerly Pseudomonas) cepacia G4 was purified to homogeneity and found to be a three-component enzyme system. The reconstituted enzyme system oxidized toluene to o-cresol and o-cresol to 3-methylcatechol, an important intermediate for growth of the bacterium on toluene. Steady-state kinetic parameters measured for the water-soluble substrate o-cresol were a Km of 0.8 microM and a Vmax of 131 nmol min-1 (mg of hydroxylase protein)-1. The three protein components were (1) a 40 kDa polypeptide containing one FAD and a [2Fe2S] cluster, (2) a 10.4 kDa polypeptide that contained no identifiable metals or organic cofactors, and (3) a 211 kDa alpha 2 beta 2 gamma 2 component containing five to six iron atoms. The 40 kDa flavo-iron-sulfur protein oxidized NADH and transferred electrons to cytochrome c, dyes, and the alpha 2 beta 2 gamma 2 component. It is analogous to other NADH oxidoreductase components found in a wide range of bacterial mono- and dioxygenases. The 10.4 kDa component, added to the other two components and NADH, increased toluene oxidation rates 10-fold. The alpha 2 beta 2 gamma 2 component was indicated to contain the site for toluene binding and hydroxylation by the following observations: (1) tight binding to a toluene affinity column; (2) oxidation of toluene after reduction of the protein with dithionite and adding O2; (3) H2O2-dependent toluene oxidation and catalase activity; and (4) spectroscopic studies of the iron atoms in the component. The alpha 2 beta 2 gamma 2 component had no significant absorbance in the visible region. EPR spectroscopy yielded a signal at g = 16 upon addition of > 2 equiv of electrons per 2 Fe atoms. Taken with the quantitation of five to six iron atoms, the data suggest that the alpha 2 beta 2 gamma 2 component contains two binuclear iron centers. In total, the structural, spectroscopic, and catalytic features of toluene 2-monooxygenase are reminiscent of soluble methane monooxygenase obtained from methanotrophic bacteria. The two enzyme systems also differ in many subtle ways; for example, they oxidize toluene with completely different regiospecificity.
The key structural feature in Boceprevir, Merck's new drug treatment for hepatitis C, is the bicyclic [3.1.0]proline moiety "P2". During the discovery and development stages, the P2 fragment was produced by a classical resolution approach. As the drug candidate advanced through clinical trials and approached regulatory approval and commercialization, Codexis and Schering-Plough (now Merck) jointly developed a chemoenzymatic asymmetric synthesis of P2 where the net reaction was an oxidative Strecker reaction. The key part of this reaction sequence is an enzymatic oxidative desymmetrization of the prochiral amine substrate.
Trichloroethylene is oxidized by several types of nonspecific bacterial oxygenases. Toluene 2-monooxygenase from Burkholderia cepacia G4 is implicated in trichloroethylene oxidation and is uniquely suggested to be resistant to turnover-dependent inactivation in vivo. In this work, the oxidation of trichloroethylene was studied with purified toluene 2-monooxygenase. All three purified toluene 2-monooxygenase protein components and NADH were required to reconstitute full trichloroethylene oxidation activity in vitro. The apparent K m and V max were 12 M and 37 nmol per min per mg of hydroxylase component, respectively. Ten percent of the full activity was obtained when the small-molecular-weight enzyme component was omitted. The stable oxidation products, accounting for 84% of the trichloroethylene oxidized, were carbon monoxide, formic acid, glyoxylic acid, and covalently modified oxygenase proteins that constituted 12% of the reacted [ 14 C]trichloroethylene. The stable oxidation products may all derive from the unstable intermediate trichloroethylene epoxide that was trapped by reaction with 4-(p-nitrobenzyl)pyridine. Chloral hydrate and dichloroacetic acid were not detected. This finding differs from that with soluble methane monooxygenase and cytochrome P-450 monooxygenase, which produce chloral hydrate. Trichloroethylene-dependent inactivation of toluene 2-monooxygenase activity was observed. All of the protein components were covalently modified during the oxidation of trichloroethylene. The addition of cysteine to reaction mixtures partially protected the enzyme system against inactivation, most notably protecting the NADH-oxidoreductase component. This suggested the participation of diffusible intermediates in the inactivation of the oxidoreductase.Trichloroethylene (TCE) is a widely used industrial solvent that has become a common contaminant of drinking water. The mammalian toxicity of TCE is low, and epidemiological evidence suggests it is not a human carcinogen (14). Of most concern is the observation that anaerobic bacteria in groundwater sometimes catalyze reductive dechlorination of TCE, yielding vinyl chloride (35). The latter compound is a potent human carcinogen (23,30). This gives impetus for extensive efforts to remediate TCE-contaminated environments, and some of the efforts use bacteria with enzymes capable of oxidizing TCE.There are no well-documented reports of bacterial growth on TCE as the sole carbon and energy source, but some organisms fortuitously oxidize the compound via nonspecific catabolic oxygenases (5-7, 9). For example, soluble methane monooxygenase and toluene dioxygenase each oxidize dozens, if not hundreds, of different organic compounds, including TCE (13,17,21,38). This has focused efforts on using organisms that express these enzymes for TCE bioremediation. Soluble methane monooxygenase is a three-protein enzyme system containing a binuclear-iron hydroxylase component. Toluene dioxygenase is also a three-protein enzyme system, thought to contain a dihydroxylase component...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.