Host specialization has important consequences for the diversification and ecological interactions of obligate pathogens. The anther-smut disease of natural plant populations, caused by Microbotryum fungi, has been characterized by specialized host-pathogen affinities, which contribute in part to the isolation among these numerous fungal species. This study investigated the molecular variation of Microbotryum pathogens within the geographic and host-specific distributions on wild Dianthus species in southern European Alps. With particular contrast to prior studies on this pathogen genus, a range of overlapping host specificities was observed for four delineated Microbotryum lineages on Dianthus hosts, and their frequent co-occurrence within single-host populations was quantified at local and regional scales. In addition to potential consequences for direct pathogen competition, the sympatry of Microbotryum lineages led to hybridization between them in many populations, and these admixed genotypes were shown to suffer significant meiotic sterility. Therefore, this investigation of the anther-smut fungi reveals how variation in the degrees of host specificity can have major implications for ecological interactions and genetic integrity of differentiated pathogen lineages.
Although congruence between host and pathogen phylogenies has been extensively investigated, the congruence between host and pathogen genetic structures at the within-species level has received little attention. Using an unprecedented and comprehensive collection of associated plant-pathogen samples, we investigated the degree of congruence between the genetic structures across Europe of two evolutionary and ecological model organisms, the anther-smut pathogen Microbotryum lychnidis-dioicae and its host plant Silene latifolia. We demonstrated a significant and particularly strong level of host-pathogen co-structure, with three main genetic clusters displaying highly similar spatial ranges in Western Europe, Eastern Europe and Italy, respectively. Correcting for the geographical component of genetic variation, significant correlations were still found between the genetic distances of anther-smut and host populations. Inoculation experiments suggested plant local adaptation, at the cluster level, for resistance to pathogens. These findings indicate that the pathogen remained isolated in the same fragmented southern refugia as its host plant during the last glaciation, and that little long-distance dispersal has occurred since the recolonization of Europe for either the plant or the pathogen, despite their known ability to travel across continents. This, together with the inoculation results, suggests that coevolutionary and competitive processes may be drivers of host-pathogen co-structure.
Understanding why diversity sometimes limits disease is essential for managing outbreaks; however, mechanisms underlying this 'dilution effect' remain poorly understood. Negative diversity-disease relationships have previously been detected in plant communities impacted by an emerging forest disease, sudden oak death.We used this focal system to empirically evaluate whether these relationships were driven by dilution mechanisms that reduce transmission risk for individuals or from the fact that disease was averaged across the host community. We integrated laboratory competence measurements with plant community and symptom data from a large forest monitoring network. Richness increased disease risk for bay laurel trees, dismissing possible dilution mechanisms. Nonetheless, richness was negatively associated with community-level disease prevalence because the disease was aggregated among hosts that vary in disease susceptibility. Aggregating observations (which is surprisingly common in other dilution effect studies) can lead to misinterpretations of dilution mechanisms and bias towards a negative diversitydisease relationship.
The corticioid fungi are commonly encountered, highly diverse, ecologically important, and understudied. We collected specimens in 60 pine and spruce forests across North America to survey corticioid fungal frequency and distribution and to compile an internal transcribed spacer (ITS) database for the group. Sanger sequences from the ITS region of vouchered specimens were compared with sequences on GenBank and UNITE, and with high-throughput sequence data from soil and roots taken at the same sites. Out of 425 high-quality Sanger sequences from vouchered specimens, we recovered 223 distinct operational taxonomic units (OTUs), the majority of which could not be assigned to species by matching to the BLAST database. Corticioid fungi were found to be hyperdiverse, as supported by the observations that nearly two-thirds of our OTUs were represented by single collections and species estimator curves showed steep slopes with no plateaus. We estimate that 14.8-24.7% of our voucher-based OTUs are likely to be ectomycorrhizal (EM). Corticioid fungi recovered from the soil formed a different community assemblage, with EM taxa accounting for 40.5-58.6% of OTUs. We compared basidioma sequences with EM root tips from our data, GenBank, or UNITE, and with this approach, we reiterate existing speculations that Trechispora stellulata is EM. We found that corticioid fungi have a significant distance-decay pattern, adding to the literature supporting fungi as having geographically structured communities. This study provides a first view of the diversity of this important group across North American pine forests, but much of the biology and taxonomy of these diverse, important, and widespread fungi remains unknown.
Since species vary in abundance and host competence (i.e., ability to get infected and transmit a pathogen), changes in species composition caused by biodiversity loss impacts disease dynamics. Forecasting effects of species composition on disease depends on community (dis)assembly, processes determining how species are added to (or lost from) communities. We simulated community assembly by planting mesocosms, nested along a richness gradient, and tested how relationships between richness, species assembly order, and overall density affect disease risk. Mesocosms with up to six crop species of varying competence were inoculated with a soilborne fungal pathogen, Rhizoctonia solani. Disease was measured as species-level prevalence, community-level prevalence, and total number of diseased plants. Regardless of metric, richness limited disease when species assembly order negatively correlated with competence and total density remained unchanged with richness.When density increased with richness or species assembled randomly, richness primarily correlated positively or weakly with disease. Our results align with theoretical expectations and represent the first empirical study to test the influence of species densities, assembly order, and competence on diversity-disease relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.