Summary1. Managing fire to achieve hazard reduction while providing for biodiversity conservation is complex in fire-prone regions. This challenge is exacerbated by limited understanding of post-fire changes in habitat and fuel attributes over time-scales commensurate with their development, and a paucity of empirical research integrating the effects of fire on these attributes. 2. We used a 110-year post-fire chronosequence to investigate temporal development in habitat resources used by fauna, and fuels for fire in semi-arid Mallee vegetation, south-eastern Australia. Fire-history mapping previously limited investigation to 35 years post-fire. The patterns of temporal change over 110 years for 13 variables, representing key attributes of habitat and fuel, were explored using nonlinear mixed models and data from 549 sites. 3. Most habitat and fuel attributes exhibited changes in abundance and rate of development over extended periods, emphasizing the importance of documenting post-fire dynamics over long timeframes. Further, developmental patterns were mostly nonlinear, indicating that a shorter temporal perspective (e.g. 20-30 years post-fire) may obscure, or provide an inaccurate understanding of, long-term changes. 4. There were striking differences in the post-fire dynamics of some habitat and fuel attributes. Leaf litter and spinifex grass Triodia scariosa, which function as both habitat and fuel, increased rapidly after fire followed by a plateau or slow decline after 20-30 years. In contrast, live tree stems were not predicted to develop hollows until 40 years, after which time the density of live hollow-bearing stems, an important habitat feature, increased steadily. 5. Synthesis and applications. Fire affects the development and abundance of resources over substantially longer periods than can be examined using fire-mapping based on satellite imagery. Our results demonstrate that post-fire changes in mallee vegetation influence fire hazard and faunal habitat in different ways. Critically, the cover ⁄ abundance of most primary fuel sources did not increase substantially beyond around 30 years post-fire; whereas important habitat attributes changed in ways that affect faunal occurrence for over a century. Fire management must explicitly acknowledge the potential for fire to affect fauna and fuel differently, and for these effects to operate over time-frames that may extend well beyond current understanding.
Aim We examined the century‐long post‐fire responses of reptiles to (1) determine the time‐scales over which fauna – fire relationships occur, (2) assess the capacity of a conceptual model to predict faunal response to fire, and (3) investigate the degree to which models of fauna – fire relationships can predict species occurrence and are transferable across space. Location A 104,000 km2 area in the semi‐arid Murray Mallee region of south‐eastern Australia. Methods We surveyed reptiles at 280 sites across a century‐long post‐fire chronosequence. We developed generalized additive mixed models (GAMMs) of the relationship between time since fire and the occurrence of 17 species in two subregions, and compared modelled responses with predictions derived from the conceptual model. The predictive capacity of GAMMs was then assessed (1) within the subregion the model was developed and (2) when transferred into a novel subregion. Results Eleven species displayed a significant relationship with time‐since‐fire, with changes in species probability of occurrence continuing up to 100 years post‐fire. Predictions of the timing of species post‐fire peak in occurrence were accurate for 9 of 13 species models for which a significant fire response was detected, but little success was achieved in predicting the shape of a species' response. GAMMs predicted species occurrence more accurately when applied within the subregion in which they were developed than when transferred into a novel subregion, primarily due to some species responding to fire more strongly in one part of their geographic range. Main conclusions Fire influences the occurrence of reptiles in semi‐arid ecosystems over century‐long time frames. Habitat‐use conceptual models have value in predicting the peak occurrence of species following fire, particularly for species with distributions strongly shaped by fire. Species relationships with fire can differ across their geographic range, probably associated with variation in climatic influences on post‐fire succession and the consequent provision of habitat resources.
Summary1. Fire is a major driver of ecosystem structure and function worldwide. It is also widely used as a management tool to achieve conservation goals. A common objective is the maintenance of 'fire mosaics' comprising spatially heterogeneous patches of differing fire history. However, it is unclear what properties of fire mosaics most enhance conservation efforts. Here we focus on the spatial and temporal properties of fire-prone landscapes that influence the distribution of small mammals. 2. We surveyed small mammals in 28 landscapes (each 12AE6 km 2 ) representing a range of fire histories in the Murray Mallee region (104 000 km 2 ) of semi-arid Australia. Generalised linear mixed models were used to examine the influence of five landscape properties on the capture rate of individual species and the species richness of native small mammals. We investigated the influence of the proportional extent of fire age-classes, the diversity of fire age-classes, the extent of the dominant vegetation type, rainfall history and biogeographic context. 3. Three of four study species were associated with the spatial extent of fire age-classes. Older vegetation was found to provide important habitat for native small mammals. Overall, however, rainfall history and biogeographic context were dominant influences: for example, the species richness of native mammals was positively associated with above-average rainfall. There was little evidence that the diversity of fire age-classes influenced either the capture rate of individual species or species richness. 4. Synthesis and applications. In fire-prone environments, habitat availability can change markedly over short time-scales. Sufficient habitat at a suitable seral stage within the landscape is a key requirement for species conservation. In mallee ecosystems, the retention of older vegetation is recommended to create more desirable fire mosaics for native small mammals. In addition to such spatial properties of mosaics that are amenable to manipulation, an understanding of how ecological processes affect the biota (such as variation in rainfall-driven productivity) is also essential for informed conservation management.
Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch-mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km(2) ) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km(2) area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape-level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse-grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11-35 years postfire) may support the fire-sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse-grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short-term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation.
Aim Fire affects the structure and dynamics of ecosystems world‐wide, over long time periods (decades and centuries) and at large spatial scales (landscapes and regions). A pressing challenge for ecologists is to develop models that explain and predict faunal responses to fire at broad temporal and spatial scales. We used a 105‐year post‐fire chronosequence to investigate small mammal responses to fire across an extensive area of ‘tree mallee’ (i.e. vegetation characterized by small multi‐stemmed eucalypts). Location The Murray Mallee region (104,000 km²) of semi‐arid Australia. Methods First, we surveyed small mammals at 260 sites and explored the fire responses of four species using nonlinear regression models. Second, we assessed the predictive accuracy of models using cross‐validation and by testing with independent data. Third, we examined our results in relation to an influential model of animal succession, the habitat accommodation model. Results Two of four study species showed a clear response to fire history. The distribution of the Mallee Ningaui Ningaui yvonneae, a carnivorous marsupial, was strongly associated with mature vegetation characterized by its cover of hummock grass. The occurrence of breeding females was predicted to increase up to 40–105 years post‐fire, highlighting the extensive time periods over which small mammal populations may be affected by fire. Evaluation of models for N. yvonneae demonstrated that accurate predictions of species occurrence can be made from fire history and vegetation data, across large geographical areas. The introduced House Mouse Mus domesticus was the only species positively associated with recently burnt vegetation. Main conclusions Understanding the impact of fire over long time periods will benefit ecological and conservation management. In this example, tracts of long‐unburnt mallee vegetation were identified as important habitat for a fire‐sensitive native mammal. Small mammal responses to fire can be predicted accurately at broad spatial scales; however, a conceptual model of post‐fire change in community structure developed in temperate Australia is not, on its own, sufficient for small mammals in semi‐arid systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.