A diet low in fermentable oligosaccharides, disaccharides, monosaccharides and, polyols (FODMAPs) is recommended for people affected by irritable bowel syndrome (IBS) and non-coeliac wheat sensitivity (NCWS) in order to reduce symptoms. Therefore, the aim of this study was to evaluate the impact of 13 sourdough-related yeasts on FODMAP degradation, especially fructans. First, a model system containing a typical wheat carbohydrate profile was applied to evaluate the growth rate of each yeast strain. Additionally, changes in the sugar composition, for up to four days, were monitored by high-pressure anion-exchange chromatography (HPAEC). A more realistic approach with a wheat flour suspension was used to characterize CO2 production according to the Einhorn method. The reduction of the total fructans was analyzed using an enzymatic method. Furthermore, a fingerprint of the present fructans with different degrees of polymerization was analyzed by HPAEC. The results revealed strong differences in the examined yeast strains’ ability to degrade fructans, in both the model system and wheat flour. Overall, Saccharomyces
cerevisiae isolated from Austrian traditional sourdough showed the highest degree of degradation of the total fructan content and the highest gas building capacity, followed by Torulaspora
delbrueckii. Hence, this study provides novel knowledge about the FODMAP conversion of yeast strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.