The function of mucosal-associated invariant T (MAIT) cells highly depends on the mode of activation, either by recognition of bacterial metabolites via their T cell receptor (TCR) or in a TCR-independent manner via cytokines. The underlying molecular mechanisms are not entirely understood. To define the activation of MAIT cells on the molecular level, we applied a multi-omics approach with untargeted transcriptomics, proteomics and metabolomics. Transcriptomic analysis of E. coli- and TCR-activated MAIT cells showed a distinct transcriptional reprogramming, including altered pathways, transcription factors and effector molecules. We validated the consequences of this reprogramming on the phenotype by proteomics and metabolomics. Thus, and to distinguish between TCR-dependent and -independent activation, MAIT cells were stimulated with IL12/IL18, anti-CD3/CD28 or both. Only a combination of both led to full activation of MAIT cells, comparable to activation by E. coli. Using an integrated network-based approach, we identified key drivers of the distinct modes of activation, including cytokines and transcription factors, as well as negative feedback regulators like TWIST1 or LAG3. Taken together, we present novel insights into the biological function of MAIT cells, which may represent a basis for therapeutic approaches to target MAIT cells in pathological conditions.
Human organoids could facilitate research of complex and currently incurable neuropathologies, such as age-related macular degeneration (AMD) which causes blindness. Here, we establish a human retinal organoid system reproducing several parameters of the human retina, including some within the macula, to model a complex combination of photoreceptor and glial pathologies. We show that combined application of TNF and HBEGF, factors associated with neuropathologies, is sufficient to induce photoreceptor degeneration, glial pathologies, dyslamination, and scar formation: These develop simultaneously and progressively as one complex phenotype. Histologic, transcriptome, live-imaging, and mechanistic studies reveal a previously unknown pathomechanism: Photoreceptor neurodegeneration via cell extrusion. This could be relevant for aging, AMD, and some inherited diseases. Pharmacological inhibitors of the mechanosensor PIEZO1, MAPK, and actomyosin each avert pathogenesis; a PIEZO1 activator induces photoreceptor extrusion. Our model offers mechanistic insights, hypotheses for neuropathologies, and it could be used to develop therapies to prevent vision loss or to regenerate the retina in patients suffering from AMD and other diseases.
Gene correlation network inference from single-cell transcriptomics data potentially allows to gain unprecendented insights into cell type-specific regulatory programs. ScRNA-seq data is severely affected by dropout, which significantly hampers and restrains current downstream analysis. Although newly developed tools are capable to deal with sparse data, no appropriate single-cell network inference workflow has been established. A potential way to end this deadlock is the application of data imputation methods, which already proofed to be useful in specific contexts of single-cell data analysis, e.g., recovering cell clusters. In order to infer cell-type specific networks, two prerequisites must be met: the identification of cluster-specific cell-types and the network inference itself. Here, we propose a benchmarking framework to investigate both objections. By using suitable reference data with inherent correlation structure, six representative imputation tools and appropriate evaluation measures, we were able to systematically infer the impact of data imputation on network inference. Major network structures were found to be preserved in low dropout data sets. For moderately sparse data sets, DCA was able to recover gene correlation structures, although systematically introducing higher correlation values. No imputation tool was able to recover true signals from high dropout data. However, by using an additional biological data set we could show that cell-cell correlation by means of specific marker gene expression was not compromised through data imputation. Our analysis showed that network inference is feasible for low and moderately sparse data sets by using the unimputed and DCA-prepared data, respectively. High sparsity data, on the other side, still pose a major problem since current imputation techniques are not able to facilitate network inference. The annotation of cluster-specific cell-types as a prerequisite is not hampered by data imputation but their power to restore the deeply hidden correlation structures is still not sufficient enough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.