There is compelling evidence that sleep contributes to the long-term consolidation of new memories. This function of sleep has been linked to slow (<1 Hz) potential oscillations, which predominantly arise from the prefrontal neocortex and characterize slow wave sleep. However, oscillations in brain potentials are commonly considered to be mere epiphenomena that reflect synchronized activity arising from neuronal networks, which links the membrane and synaptic processes of these neurons in time. Whether brain potentials and their extracellular equivalent have any physiological meaning per se is unclear, but can easily be investigated by inducing the extracellular oscillating potential fields of interest. Here we show that inducing slow oscillation-like potential fields by transcranial application of oscillating potentials (0.75 Hz) during early nocturnal non-rapid-eye-movement sleep, that is, a period of emerging slow wave sleep, enhances the retention of hippocampus-dependent declarative memories in healthy humans. The slowly oscillating potential stimulation induced an immediate increase in slow wave sleep, endogenous cortical slow oscillations and slow spindle activity in the frontal cortex. Brain stimulation with oscillations at 5 Hz--another frequency band that normally predominates during rapid-eye-movement sleep--decreased slow oscillations and left declarative memory unchanged. Our findings indicate that endogenous slow potential oscillations have a causal role in the sleep-associated consolidation of memory, and that this role is enhanced by field effects in cortical extracellular space.
The finding that fast and slow spindles occur at different times of the SO cycle points to disparate generating mechanisms for the 2 kinds of spindles. The reported temporal relationships during SO sequences suggest that fast spindles, driven by the SO up-state feed back to enhance the likelihood of succeeding SOs together with slow spindles. By enforcing such SO-spindle cycles, particularly after prior learning, fast spindles possibly play a key role in sleep-dependent memory processing.
Based on findings primarily in cats, the grouping of spindle activity and fast brain oscillations by slow oscillations during slow-wave sleep (SWS) has been proposed to represent an essential feature in the processing of memories during sleep. We examined whether a comparable grouping of spindle and fast activity coinciding with slow oscillations can be found in human SWS. For negative and positive half-waves of slow oscillations (dominant frequency, 0.7-0.8 Hz) identified during SWS in humans (n = 13), wave-triggered averages of root mean square (rms) activity in the theta (4-8 Hz), alpha (8-12 Hz), spindle (12-15 Hz), and beta (15-25 Hz) range were formed. Slow positive half-waves were linked to a pronounced and microV (23.4%; p < 0.001, with reference to baseline) at the midline central electrode (Cz). In contrast, spindle activity was suppressed during slow negative half-waves, on average by -0.65 +/- 0.06 microV at Cz (-22%; p < 0.001). An increase in spindle activity 400-500 msec after negative half-waves was more than twofold the increase during slow positive half-waves (p < 0.001). A similar although less pronounced dynamic was observed for beta activity, but not for alpha and theta frequencies. Discrete spindles identified during stages 2 and 3 of non-rapid eye movement (REM) sleep coincided with a discrete slow positive half-wave-like potential preceded by a pronounced negative half-wave (p < 0.01). These results provide the first evidence in humans of grouping of spindle and beta activity during slow oscillations. They support the concept that phases of cortical depolarization during slow oscillations, reflected by surface-positive (depth-negative) field potentials, drive the thalamocortical spindle activity. The drive is particularly strong during cortical depolarization, expressed as surface-positive field potentials.
In humans, weak transcranial direct current stimulation (tDCS) modulates excitability in the motor, visual, and prefrontal cortex. Periods rich in slow-wave sleep (SWS) not only facilitate the consolidation of declarative memories, but in humans, SWS is also accompanied by a pronounced endogenous transcortical DC potential shift of negative polarity over frontocortical areas. To experimentally induce widespread extracellular negative DC potentials, we applied anodal tDCS (0.26 mA/cm 2 ) repeatedly (over 30 min) bilaterally at frontocortical electrode sites during a retention period rich in SWS. Retention of declarative memories (word pairs) and also nondeclarative memories (mirror tracing skills) learned previously was tested after this period and compared with retention performance after placebo stimulation as well as after retention intervals of wakefulness. Compared with placebo stimulation, anodal tDCS during SWS-rich sleep distinctly increased the retention of word pairs ( p Ͻ 0.005). When applied during the wake retention interval, tDCS did not affect declarative memory. Procedural memory was also not affected by tDCS. Mood was improved both after tDCS during sleep and during wake intervals. tDCS increased sleep depth toward the end of the stimulation period, whereas the average power in the faster frequency bands (, ␣, and ) was reduced. Acutely, anodal tDCS increased slow oscillatory activity Ͻ3 Hz. We conclude that effects of tDCS involve enhanced generation of slow oscillatory EEG activity considered to facilitate processes of neuronal plasticity. Shifts in extracellular ionic concentration in frontocortical tissue (expressed as negative DC potentials during SWS) may facilitate sleep-dependent consolidation of declarative memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.