Purpose This review of sediment source fingerprinting assesses the current state-of-the-art, remaining challenges and emerging themes. It combines inputs from international scientists either with track records in the approach or with expertise relevant to progressing the science. Methods Web of Science and Google Scholar were used to review published papers spanning the period 2013–2019, inclusive, to confirm publication trends in quantities of papers by study area country and the types of tracers used. The most recent (2018–2019, inclusive) papers were also benchmarked using a methodological decision-tree published in 2017. Scope Areas requiring further research and international consensus on methodological detail are reviewed, and these comprise spatial variability in tracers and corresponding sampling implications for end-members, temporal variability in tracers and sampling implications for end-members and target sediment, tracer conservation and knowledge-based pre-selection, the physico-chemical basis for source discrimination and dissemination of fingerprinting results to stakeholders. Emerging themes are also discussed: novel tracers, concentration-dependence for biomarkers, combining sediment fingerprinting and age-dating, applications to sediment-bound pollutants, incorporation of supportive spatial information to augment discrimination and modelling, aeolian sediment source fingerprinting, integration with process-based models and development of open-access software tools for data processing. Conclusions The popularity of sediment source fingerprinting continues on an upward trend globally, but with this growth comes issues surrounding lack of standardisation and procedural diversity. Nonetheless, the last 2 years have also evidenced growing uptake of critical requirements for robust applications and this review is intended to signpost investigators, both old and new, towards these benchmarks and remaining research challenges for, and emerging options for different applications of, the fingerprinting approach.
The development of cavernous weathering features such as tafoni remains poorly understood. In particular, the roles played by internal moisture and case hardening remain unclear. In this study, Electric Resistivity Tomography (ERT) has been used to map moisture distribution within inner walls of tafoni developed in sandstone, and an Equotip device used to measure rock surface hardness as a proxy measure of the degree of weathering and case hardening. Seven large tafoni in the Golden Gate Highlands National Park (South Africa), varying in size and degree of development have been monitored. A dynamic relationship between surface hardness, degree of weathering and internal moisture regimes has been found. We propose a new conceptual model which illustrates the complex interaction between case hardening and internal moisture and suggests a new direction for cavernous weathering research. Copyright © 2011 John Wiley & Sons, Ltd.
Conflict damage to heritage has been thrust into the global spotlight during recent conflict in the Middle East. While the use of social media has heightened and enhanced public awareness of this 'cultural terrorism' , the occurrence of this type of vandalism is not new. In fact, as this study demonstrates, evidence of the active targeting of sites, as well as collateral damage when heritage is caught in crossfire, is widely visible around Europe and further afield. Using a variety of case studies ranging from the 1640s to the 1930s, we illustrate and quantify the changing impact of ballistics on heritage buildings as weaponry and ammunition have increased in both energy and energy density potential. In the first instance, this study highlights the increasing threats to heritage in conflict areas. Second, it argues for the pressing need to quantify and map damage to the stonework in order to respond to these challenges.
Projectile damage to building stone is a widespread phenomenon. Sites damaged 100 years ago during the First World War still see daily use, while in a more contemporary setting numerous reports show the damage to buildings in Babylon, Mosul and Palmyra. While research has been carried out on the long-term effects of conflict such as fire damage, little is known about the protracted damage sustained through the impact of bullets, shrapnel and other metal projectiles outside of the field of engineering focused on ceramics and metals. To investigate alterations to mineral structure caused by projectile damage, impacts were created in medium-grained, well-compacted, mesoporous sandstone samples using 0.22 calibre lead bullets shot at a distance of 20 m. Half these samples were treated with a surface consolidant (Wacker OH 100), to mimic natural cementation of the rock surface. These samples were then tested for changes to surface hardness and moisture movement during temperature cycles of 15–65°C. Petrographic thin section analysis was carried out to investigate the micro-scale deformation associated with high-speed impact. The results surprisingly show that stress build-up behind pre-existing cementation of the surface, as found in heritage sites that have been exposed to moisture and temperature fluctuations for longer periods of time, can be alleviated with a bullet impact. However, fracture networks and alteration of the mineral matrices still form a weak point within the structure, even at a relatively low impact calibre. This initial study illustrates the need for geomorphologists, geologists, engineers and heritage specialists to work collectively to gain further insights into the long-term impact of higher calibre armed warfare on heritage deterioration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.